
CPSEd 2017 | Belleville Nicolas

THE MULTIPLE WAYS TO AUTOMATE THE APPLICATION
OF SOFTWARE COUNTERMEASURES AGAINST

PHYSICAL ATTACKS: PITFALLS AND GUIDELINES

Belleville Nicolas 1

Barry Thierno 1

Seriai Abderrahmane 1

Couroussé Damien 1

Heydemann Karine 2

Robisson Bruno 3

Charles Henri-Pierre 1

1 Univ Grenoble Alpes, CEA, List, F-

38000 Grenoble, France

firstname.lastname@cea.fr
2 Sorbonne Universités, UPMC,

Univ. Paris 06, CNRS,LIP6,UMR

7606 75005 Paris, France

firstname.lastname@lip6.fr
3 CEA/EMSE, Secure Architectures

and Systems Laboratory CMP, 880

Route de Mimet, 13541 Gardanne,

France

firstname.lastname@cea.fr

mailto:firstname.lastname@cea.fr
mailto:firstname.lastname@lip6.fr
mailto:firstname.lastname@cea.fr

| 2

• In 2008, for an average person: 230 embedded chips used every

day !

• Number of Cyber-Physical Systems is expected to grow

• Lots of them…

• Connected watches

• Connected buildings

• Smartphones

• Monitors for human health in hospitals

• …

• … manipulate sensitive data

• Where you are

• Messages between you and someone else

• Pictures / videos of you or your house

• Health data

• …

CPSEd 2017 | Belleville Nicolas

INTRODUCTION

| 3

• Encryption is used to protect this data

• Secure transfers of data between connected objects and servers or cloud

• Once encrypted, data cannot be recovered without the key

• Cryptanalysis: The designs of encryption algorithms used are well

studied

• Security relatively to attacker’s means

• Lot of research teams try to break them

• Their designs are a lot studied!

CPSEd 2017 | Belleville Nicolas

INTRODUCTION

Device

Cloud

data
Encrypted

data

Encrypted

data
key

| 4CPSEd 2017 | Belleville Nicolas

INTRODUCTION: CRYPTOGRAPHY

Plaintext Ciphertext

Key

Black box

• Black box assumption

• the attacker has no physical access to the key, nor to any internal

processing, but can only observe external information and behavior

| 5CPSEd 2017 | Belleville Nicolas

INTRODUCTION: CRYPTOGRAPHY

Plaintext Ciphertext

Key

Black box

• Black box assumption

• the attacker has no physical access to the key, nor to any internal

processing, but can only observe external information and behavior

| 6

• In reality: grey box

• Side channel information leakage:

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

Plaintext Ciphertext

Key

Grey box

Side channels:

Power consumption

Electromagnetic emission

Acoustic emission

Time of execution

…

| 7

• In reality: grey box

• Side channel information leakage

• System vulnerable to faults

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

Plaintext Bad ciphertext

Key

Grey box

Fault injection:

Clock glitch

Laser beam

Light beam

Heating

…

| 8

• Encryption is used to protect this data

• Secure transfers of data between connected objects and servers or cloud

• Once encrypted, data cannot be recovered without the key

• Cryptanalysis: The designs of encryption algorithms used are well

studied

• Security relatively to attacker’s means

• Lot of research teams try to break them

• Their designs are a lot studied!

• Physical attacks are the only effective way to break cryptanalysis-

resistant crypto ciphers

• That’s why their countermeasures are usually evaluated on crypto blocks

• But their range of target is BROADER than that

CPSEd 2017 | Belleville Nicolas

INTRODUCTION

| 9

• Introduction

• Side channel attacks detailed example:

how correlation power analysis works

• Fault injection attacks detailed example:

how differential fault attacks works

• Hardware countermeasures

• Software countermeasures

Why we want to apply them automatically

Survey of existing approaches to apply some of them automatically

Why we should take the compiler into account while applying countermeasure

Why applying countermeasures within compilation process is valuable

• Conclusion

CPSEd 2017 | Belleville Nicolas

OUTLINE

| 10CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

Plaintext Ciphertext

Key

Grey box

Side channels:

Power consumption

Electromagnetic emission

Acoustic emission

Time of execution

…

| 11

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic

emission /…

• Attack steps:

• Choose a target intermediate value
• That depends only of one byte of the key ideally

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
plaintext

key intermediate

value

ciphertext

| 12

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis
• With a model of emission (hamming weight or hamming distance usually used)

• The theoretical emission is computed for all key hypothesis for N plaintexts

• We get Nx256 theoretical emissions (attack of one byte of the key)

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
plaintext
key intermediate

value

ciphertext

theoretical

emission
HW(value)

| 13

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis
• With a model of emission (hamming weight or hamming distance usually used)

• The theoretical emission is computed for all key hypothesis for N plaintexts

• We get Nx256 theoretical emissions (attack of one byte of the key)

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
plaintexts
keys intermediate

values

ciphertexts

theoretical

emissions
HW(value)

N

256

Nx256

| 14

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis

• Measure emission through several encryptions
• At least one encryption per plaintext

• Measurements have to be aligned

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
plaintexts
keys intermediate

values

ciphertexts

theoretical

emissions
HW(value)

N

256

Nx256

N traces

| 15

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis

• Measure emission through several encryptions

• Compare measurements with theoretical values
• Highest correlation between theory and traces gives a key candidate

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
plaintexts
keys intermediate

values

ciphertexts

theoretical

emissions
HW(value)

N

256

Nx256

N traces

key hypothesis

which fits best

measurements

correlation

| 16

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis

• Measure emission through several encryptions

• Compare measurements with theoretical values
• Highest correlation between theory and traces gives a key candidate

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
plaintexts
keys intermediate

values

ciphertexts

theoretical

emissions
HW(value)

N

256

Nx256

N traces

key hypothesis

which fits best

measurements

correlation

This is an example of how side channel

attacks can be mounted.

BUT: they can target other kind of

applications (web browsers, verifypin, …),

and can also be used to help monitoring

fault injection attacks

| 17CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

Plaintext Bad ciphertext

Key

Grey box

Fault injection:

Clock glitch

Laser beam

Light beam

Heating

…

| 18

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…

AES
plaintexts
keys

fault to be injected here

N

256

| 19

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext
• Use a model of the fault like instruction skip or data nullified

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…

AES
plaintexts
keys

fault to be injected here

Bad ciphertexts

N

256

Nx256

| 20

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext

• Collect the ciphertexts for all plaintexts while faulting the chip

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…

AES
plaintexts
keys

fault to be injected here

Bad ciphertexts

N

256

Nx256

Bad ciphertexts

N

| 21

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext

• Collect the ciphertexts for all plaintexts while faulting the chip

• Compare ciphertexts obtained with the theoretical ones

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…

AES
plaintexts
keys

fault to be injected here

Bad ciphertexts

N

256

Nx256

Bad ciphertexts

N

Comparison

Key byte which fits best the

effects observed

| 22

• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext

• Collect the ciphertexts for all plaintexts while faulting the chip

• Compare ciphertexts obtained with the theoretical ones

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…

AES
plaintexts
keys

fault to be injected here

Bad ciphertexts

N

256

Nx256

Bad ciphertexts

N

Comparison

Key byte which fits best the

effects observed

This is an example of how fault injections

can be used.

BUT: they can target other kind of

applications! (bootloaders, verifypin, …)

| 23

The key is

qshgoq
• Side-channel:

• Hiding
• Lower the SNR (Signal Noise Ratio) in measurements

• Masking
• Break the direct link between emissions

and the key

• Fault injection attacks:

• Fault tolerance
• A fault won’t change the behavior of

the program

• Fault detection
• A fault will be detected and put the

program/chip in a predefined state

CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES

BLAHBLAHBLAH

I’m fine

Sorry, I’m on

sick leave

Good output

No output

The key

combined with

randomness is

qshgoq

| 24

• Side-channel:

• Dual rail with precharge logic
• 0 and 1 are encoded with (0,1) and (1,0) couples

• Output of each gate is precharged with either (0,0) or (1,1)

• Hamming weight and Hamming distance are independent of data

• Insert noise
• Random voltage scaling

• Variable clock speed (temporal desynchronization)

• Filter power consumption
• Make the power consumption as constant as possible

CPSEd 2017 | Belleville Nicolas

HARDWARE COUNTERMEASURES

first:

second:

} =

} =

unaligned

c

| 25

• Fault injection attacks:

• Encapsulation
• Prevent the attack by making the access to components hard

• Detector of light emission / magnetic field
• Detect signals which may be related to a fault injection

• Integrity
• Check the absence of control flow corruption (CFI)

• Check data integrity

• Error correcting memory
• The memory is able to correct a certain number

of errors in the data

CPSEd 2017 | Belleville Nicolas

HARDWARE COUNTERMEASURES

data

memory
faulted

memory

data
correct

errors

| 26

• Side-channel:

• Dual rail with precharge logic

• Insert noise

• Filter power consumption

• Fault injection attacks:

• Encapsulation

• Detector of light emission / magnetic field

• Control flow integrity

• Error correcting memory

• Problems / Limitations:

• Requires expertise

• Takes time to implement

• Costly hardware

• Impossible to update

• Countermeasure is applied everywhere, even on uncritical code

CPSEd 2017 | Belleville Nicolas

HARDWARE COUNTERMEASURES

| 27

• Side-channel:

• Instructions shuffling & Temporal desynchronization
• Make alignment of measurements fail

• Dependency analysis between instructions based on registers used or defined

• Masking
• Combine the key with a random number to change the profile of the leakage

• All the algorithm is modified so that everything is computed using the masked

key

CPSEd 2017 | Belleville Nicolas

SOFTWARE COUNTERMEASURES

for (i=0; i<n; i++) {

k = rand(possible_values);

T[k]=T[k]+1;

}

asm {

add r3, r3, #1

sub r6, r7, #3

}

choose randomly at runtime

between the 2 forms

iterate in random order

mask = rand();

masked_key = key xor mask;

a = a xor key;

b = a;

return b;

a = a xor masked_key;

b = a;

return b xor mask;

everything is computed masked

the mask is removed from the result at the end

asm {

sub r6, r7, #3

add r3, r3, #1

}

if (rand(2)) {

} else {

}

| 28

• Fault injection attacks:

• Code duplication
• Some parts of the code are duplicated / Duplication of all instructions

• Tolerance of one instruction-skip fault

• Control flow integrity
• At each basic block, check that we come from a legitimate basic block

• Detection of instruction-modification fault that change the control flow

• Error detecting codes throughout the algorithms
• Add a parity bit to the variables and keep trace of it

• Detection of data-corruption fault

CPSEd 2017 | Belleville Nicolas

SOFTWARE COUNTERMEASURES

if (password == “ok”) {

if (password == “ok”) { … }

}

add r3, r4, #1 add r3, r4, #1

add r3, r4, #1


1

3
2

4

check that we come from 2 or 3

check that we come from 1

011001010

011001011

Ok

Error !

duplicate code duplicate instructions

| 29

• Side-channel:

• Instructions shuffling & Temporal desynchronization

• Masking

• Fault injection attacks:

• Code duplication

• Control flow integrity

• Error detecting codes throughout the algorithms

• Problems:

• Requires expertise

• Takes time to implement

• Implementation on every critical functions

• Compilation can optimize out countermeasures

• Performance cost

CPSEd 2017 | Belleville Nicolas

SOFTWARE COUNTERMEASURES

| 30

• Side-channel:

• Instructions shuffling & Temporal desynchronization

• Masking

• Fault injection attacks:

• Code duplication

• Control flow integrity

• Error detecting codes throughout the algorithms

• Problems:

• Requires expertise

• Takes time to implement

• Implementation on every critical functions

• Compilation can optimize out countermeasures

• Performance cost

CPSEd 2017 | Belleville Nicolas

SOFTWARE COUNTERMEASURES

Automatically apply them ?

| 31

• Side-channel:

• Instructions shuffling & Temporal desynchronization

• Masking

• Fault injection attacks:

• Code duplication

• Control flow integrity

• Error detecting codes throughout the algorithms

• Problems:

• Requires expertise

• Takes time to implement

• Implementation on every critical functions

• Compilation can optimize out countermeasures

• Performance cost

CPSEd 2017 | Belleville Nicolas

SOFTWARE COUNTERMEASURES

Automatically apply them ?

HOW ?

| 32CPSEd 2017 | Belleville Nicolas

DIFFERENT LEVELS OF APPLICATION
S

o
u
rc

e
 c

o
d
e

B
in

a
ry

 /
 a

s
s
e
m

b
ly

F
ro

n
t
e
n
d

M
id

d
le

 e
n
d

B
a
c
k
 e

n
d

Parse

source

code,

change

represen

tation

Optimize

code

Optimize code,

select

instructions,

register

allocation, emit

assembly

Compilation

| 33CPSEd 2017 | Belleville Nicolas

DIFFERENT LEVELS OF APPLICATION
S

o
u
rc

e
 c

o
d
e

B
in

a
ry

 /
 a

s
s
e
m

b
ly

F
ro

n
t
e
n
d

M
id

d
le

 e
n
d

B
a
c
k
 e

n
d

Parse

source

code,

change

represen

tation

Optimize

code

Optimize code,

select

instructions,

register

allocation, emit

assembly

Compilation

Apply

countermeasure

| 34CPSEd 2017 | Belleville Nicolas

DIFFERENT LEVELS OF APPLICATION
S

o
u
rc

e
 c

o
d
e

B
in

a
ry

 /
 a

s
s
e
m

b
ly

F
ro

n
t
e
n
d

M
id

d
le

 e
n
d

B
a
c
k
 e

n
d

Parse

source

code,

change

represen

tation

Optimize

code

Optimize code,

select

instructions,

register

allocation, emit

assembly

Compilation

Apply

countermeasure

| 35CPSEd 2017 | Belleville Nicolas

DIFFERENT LEVELS OF APPLICATION
S

o
u
rc

e
 c

o
d
e

B
in

a
ry

 /
 a

s
s
e
m

b
ly

F
ro

n
t
e
n
d

M
id

d
le

 e
n
d

B
a
c
k
 e

n
d

Parse

source

code,

change

represen

tation

Optimize

code

Optimize code,

select

instructions,

register

allocation, emit

assembly

Compilation

Apply

countermeasure

| 36

• Steps to do once:

• Write a parser

• Write a transformation pass for critical parts

• Write a file emitter for targeted format

• Steps to do for every file:

• Transform file

• Compile file

• Disassemble file

• Check that countermeasures are still here

• Disabling compiler optimizations (-O0) to skip the checking phase

is a bad idea

• Horrible performance

• Register spilling → new leakage

• References that use this approach: [Eldib, LNCS, 2014] [Lalande, LNCS,

2014] [Luo, ASAP, 2015]

CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ SOURCE CODE

| 37

• Steps to do once:

• Update the parser

• Add a transformation pass to transform critical parts

• Check once for all that later transformations do not threaten the

countermeasure

• If necessary, deactivate or transform some of them

• Steps to do for every file:

• Compile file

• The code resulting is correctly optimized

• References that use this approach: [Agosta, IEEE TCAD, 2015] [Agosta,

DAC, 2012] [Agosta, DAC, 2013] [Barry, CS2, 2016] [Bayrak, IEEE TC, 2015] [Malagón,

Sensors, 2012] [Moss, LNCS, 2012]

• [Bayrak, IEEE TC, 2015]: hybrid approach between the “assembly” and “within

the compiler” approaches. Uses the compiler to decompile a binary file up

to an intermediate representation before applying the countermeasure.
CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ WITHIN THE COMPILER

no need to be a security expert here

| 38

• Steps to do once:

• Write a parser

• Write analysis passes which reconstruct some higher level information if

necessary

• Write the transformation

• Write a file emitter

• Steps to do for every file:

• Compile the file

• Disassemble it

• Transform it

• Reassemble it

• The resulting code is secured but performance can be affected

• Compiler uses registers as if they won’t be used for something else

• The need for additional registers while applying countermeasure may lead

to register spilling

• References that use this approach: [Bayrak, DAC, 2011] [Moro, 2014] [Rauzy,

JCEN, 2016] CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ ASSEMBLY CODE

no need to be a security expert here

| 39

Level Team Approach

Source

code

Lalande & al.

Eldib & al.

• CFI applied on C code

• Use clang as a parser and apply Masking with a

SMT solver

Within the

compiler

Agosta & al.

Barry & al.

• Modified LLVM (new passes & modified passes).

Hiding applied automatically.

• Modified LLVM (new passes & modified passes).

Instruction Duplication applied automatically.

Assembly

code

Bayrak & al.

Moro & al.

• Random precharging applied automatically.

• Instruction Duplication applied automatically.

CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ DETAILED EXAMPLES

• J.-F. Lalande, K. Heydemann, and P. Berthomé. Software Countermeasures for Control Flow Integrity of Smart Card C

Codes. In European Symposium on Research in Computer Security, pages 200–218. Springer, 2014.

• H. Eldib and C. Wang. Synthesis of Masking Countermeasures Against Side Channel Attacks. In International

Conference on Computer Aided Verification, pages 114–130. Springer, 2014.

• G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. The MEET Approach: Securing Cryptographic Embedded Software

Against Side Channel Attacks. IEEE TCAD, 34(8):1320–1333, 2015.

• T. Barry, D. Couroussé, and B. Robisson. Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. In

Proceedings of the Third Workshop on Cryptography and Security in Computing Systems, pages 1–6. ACM, 2016.

• A. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne. A first step towards automatic application of power

analysis countermeasures. pages 230–235, 2011.

• N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson. Formal Verification of a Software Countermeasure Against

Instruction Skip Attacks. Journal of Cryptographic Engineering, 4(3):145–156, 2014.

| 40

Level Team Approach

Source

code

Lalande & al.

Eldib & al.

• CFI applied on C code

• Use clang as a parser and apply Masking with a

SMT solver

Within the

compiler

Agosta & al.

Barry & al.

• Modified LLVM (new passes & modified passes).

Hiding applied automatically.

• Modified LLVM (new passes & modified passes).

Instruction Duplication applied automatically.

Assembly

code

Bayrak & al.

Moro & al.

• Random precharging applied automatically.

• Instruction Duplication applied automatically.

CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ DETAILED EXAMPLES

• J.-F. Lalande, K. Heydemann, and P. Berthomé. Software Countermeasures for Control Flow Integrity of Smart Card C

Codes. In European Symposium on Research in Computer Security, pages 200–218. Springer, 2014.

• H. Eldib and C. Wang. Synthesis of Masking Countermeasures Against Side Channel Attacks. In International

Conference on Computer Aided Verification, pages 114–130. Springer, 2014.

• G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. The MEET Approach: Securing Cryptographic Embedded Software

Against Side Channel Attacks. IEEE TCAD, 34(8):1320–1333, 2015.

• T. Barry, D. Couroussé, and B. Robisson. Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. In

Proceedings of the Third Workshop on Cryptography and Security in Computing Systems, pages 1–6. ACM, 2016.

• A. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne. A first step towards automatic application of power

analysis countermeasures. pages 230–235, 2011.

• N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson. Formal Verification of a Software Countermeasure Against

Instruction Skip Attacks. Journal of Cryptographic Engineering, 4(3):145–156, 2014.

For the same countermeasure, compiler approach reduced

performance overhead from x2.86 to x1.92 and

size overhead from x2.90 to x1.16 for MiBench AES

| 41

Level Pros Cons

Source code • More or less

straightforward

• Countermeasure can be

optimized out during

compilation

• Assembly code MUST be

checked after compilation

Within the compiler • Provide security AND

performance

• Optimizations can be

controlled

• Harder to implement.

• Requires to have access

to the compiler source

code

Assembly code • Countermeasure not

optimized out

• Can even secure binary

programs without their

source code

• Can be hard to take all

instructions into account

or to do high level

transformations

• Performance more

affected

CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ IN A NUTSHELL

| 42

• Physical attacks are an important threat for cyber-physical

systems

• They are the only effective way to break encryption

• Their range of target is broader than encryption

• Best security levels are reached by combining hardware and software

countermeasures

• Securing is costly

• Automatic application of software countermeasures or automatic design of

hardware with countermeasures can reduce this cost

• Compilation is usually forgotten in potential threats to

countermeasures

• source code ≠ binary

• Securing during compilation is valuable

• Enables to optimize the performance cost of a countermeasure

• Hardware has to be taken into account too

• binary ≠ what is really executed

• Speculative execution within the processor
CPSEd 2017 | Belleville Nicolas

CONCLUSION

| 43

• Physical attacks are an important threat for cyber-physical

systems

• They are the only effective way to break encryption

• Their range of target is broader than encryption

• Best security levels are reached by combining hardware and software

countermeasures

• Securing is costly

• Automatic application of software countermeasures or automatic design of

hardware with countermeasures can reduce this cost

• Compilation is usually forgotten in potential threats to

countermeasures

• source code ≠ binary

• Securing during compilation is valuable

• Enables to optimize the performance cost of a countermeasure

• Hardware has to be taken into account too

• binary ≠ what is really executed

• Speculative execution within the processor
CPSEd 2017 | Belleville Nicolas

CONCLUSION

Pay attention to these!

| 44

• [Bayrak, DAC, 2011] A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne, ‘A first step towards

automatic application of power analysis countermeasures’, presented at the Proceedings - Design Automation

Conference, 2011, pp. 230–235.

• [Moro, 2014] N. Moro, ‘Security of assembly programs against fault attacks on embedded processors’, Theses,

Université Pierre et Marie Curie - Paris VI, 2014.

• [Rauzy, JCEN, 2016] P. Rauzy, S. Guilley, and Z. Najm, ‘Formally proved security of assembly code against

power analysis: A case study on balanced logic’, Journal of Cryptographic Engineering, vol. 6, no. 3, pp. 201–

216, 2016.

• [Agosta, IEEE TCAD, 2015] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, ‘The MEET Approach: Securing

Cryptographic Embedded Software Against Side Channel Attacks’, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 34, no. 8, pp. 1320–1333, Aug. 2015.

• [Agosta, DAC, 2012] G. Agosta, A. Barenghi, and G. Pelosi, ‘A code morphing methodology to automate power

analysis countermeasures’, in DAC Design Automation Conference 2012, 2012, pp. 77–82.

• [Agosta, DAC, 2013] G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi, ‘Compiler-based side channel

vulnerability analysis and optimized countermeasures application’, in Design Automation Conference (DAC),

2013 50th ACM/EDAC/IEEE, 2013, pp. 1–6.

• [Barry, CS2, 2016] T. Barry, D. Couroussé, and B. Robisson, ‘Compilation of a Countermeasure Against

Instruction-Skip Fault Attacks’, in Workshop on Cryptography and Security in Computing Systems, vienna,

Austria, 2016.

• [Bayrak, IEEE TC, 2015] A. G. Bayrak, F. Regazzoni, D. Novo, P. Brisk, F.-X. Standaert, and P. Ienne, ‘Automatic

application of power analysis countermeasures’, IEEE Transactions on Computers, vol. 64, no. 2, pp. 329–341,

2015.

• [Malagón, Sensors, 2012] P. Malagón, G. de, M. Zapater, J. M. Moya, and Z. Banković, ‘Compiler optimizations

as a countermeasure against side-channel analysis in MSP430-based devices’, Sensors (Switzerland), vol. 12,

no. 6, pp. 7994–8012, 2012.

CPSEd 2017 | Belleville Nicolas

REFERENCES

| 45

• [Moss, LNCS, 2012] A. Moss, E. Oswald, D. Page, and M. Tunstall, ‘Compiler assisted masking’, Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 7428 LNCS, pp. 58–75, 2012.

• [Eldib, LNCS, 2014] H. Eldib and C. Wang, ‘Synthesis of masking countermeasures against side channel

attacks’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 8559 LNCS, pp. 114–130, 2014.

• [Lalande, LNCS, 2014] J.-F. Lalande, K. Heydemann, and P. Berthomé, ‘Software countermeasures for control

flow integrity of smart card c codes’, Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8713 LNCS, no. PART 2, pp. 200–218, 2014.

• [Luo, ASAP, 2015] P. Luo, L. Zhang, Y. Fei, and A. A. Ding, ‘Towards secure cryptographic software

implementation against side-channel power analysis attacks’, in Application-specific Systems, Architectures

and Processors (ASAP), 2015 IEEE 26th International Conference on, 2015, pp. 144–148.

CPSEd 2017 | Belleville Nicolas

REFERENCES

Commissariat à l’énergie atomique et aux énergies alternatives

17 rue des Martyrs | 38054 Grenoble Cedex

www.cea-tech.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Thank you for

your attention

Questions?

Contact:

nicolas.belleville@cea.fr

THE MULTIPLE WAYS TO AUTOMATE

THE APPLICATION OF SOFTWARE

COUNTERMEASURES AGAINST

PHYSICAL ATTACKS:

PITFALLS AND GUIDELINES

Belleville Nicolas 1

Barry Thierno 1

Seriai Abderrahmane 1

Couroussé Damien 1

Heydemann Karine 2

Robisson Bruno 3

Charles Henri-Pierre 1

1 Univ Grenoble Alpes, CEA, List, F-

38000 Grenoble, France

firstname.lastname@cea.fr
2 Sorbonne Universités, UPMC,

Univ. Paris 06, CNRS,LIP6,UMR

7606 75005 Paris, France

firstname.lastname@lip6.fr
3 CEA/EMSE, Secure Architectures

and Systems Laboratory CMP, 880

Route de Mimet, 13541 Gardanne,

France

firstname.lastname@cea.fr

mailto:firstname.lastname@cea.fr
mailto:firstname.lastname@lip6.fr
mailto:firstname.lastname@cea.fr

