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• In 2008, for an average person: 230 embedded chips used every 

day !

• Number of Cyber-Physical Systems is expected to grow

• Lots of them…

• Connected watches

• Connected buildings

• Smartphones

• Monitors for human health in hospitals

• …

• … manipulate sensitive data

• Where you are

• Messages between you and someone else

• Pictures / videos of you or your house

• Health data

• …
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• Encryption is used to protect this data

• Secure transfers of data between connected objects  and servers or cloud

• Once encrypted, data cannot be recovered without the key

• Cryptanalysis: The designs of encryption algorithms used are well 

studied

• Security relatively to attacker’s means

• Lot of research teams try to break them

• Their designs are a lot studied!
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INTRODUCTION: CRYPTOGRAPHY

Plaintext Ciphertext

Key

Black box

• Black box assumption

• the attacker has no physical access to the key, nor to any internal 

processing, but can only observe external information and behavior
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• In reality: grey box

• Side channel information leakage: 
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PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS
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Grey box

Side channels:
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• In reality: grey box

• Side channel information leakage

• System vulnerable to faults
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PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

Plaintext Bad ciphertext

Key

Grey box

Fault injection:

Clock glitch
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Light beam

Heating
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• Encryption is used to protect this data

• Secure transfers of data between connected objects  and servers or cloud

• Once encrypted, data cannot be recovered without the key

• Cryptanalysis: The designs of encryption algorithms used are well 

studied

• Security relatively to attacker’s means

• Lot of research teams try to break them

• Their designs are a lot studied!

• Physical attacks are the only effective way to break cryptanalysis-

resistant crypto ciphers

• That’s why their countermeasures are usually evaluated on crypto blocks

• But their range of target is BROADER than that
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INTRODUCTION
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• Introduction

• Side channel attacks detailed example: 

how correlation power analysis works

• Fault injection attacks detailed example: 

how differential fault attacks works

• Hardware countermeasures

• Software countermeasures

Why we want to apply them automatically

Survey of existing approaches to apply some of them automatically

Why we should take the compiler into account while applying countermeasure

Why applying countermeasures within compilation process is valuable

• Conclusion

CPSEd 2017 | Belleville Nicolas

OUTLINE
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PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic 

emission /…

• Attack steps:

• Choose a target intermediate value
• That depends only of one byte of the key ideally

CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic 

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis
• With a model of emission (hamming weight or hamming distance usually used)

• The theoretical emission is computed for all key hypothesis for N plaintexts

• We get Nx256 theoretical emissions (attack of one byte of the key)
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PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic 

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis
• With a model of emission (hamming weight or hamming distance usually used)

• The theoretical emission is computed for all key hypothesis for N plaintexts

• We get Nx256 theoretical emissions (attack of one byte of the key)
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic 

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis

• Measure emission through several encryptions
• At least one encryption per plaintext

• Measurements have to be aligned
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PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic 

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis

• Measure emission through several encryptions

• Compare measurements with theoretical values
• Highest correlation between theory and traces gives a key candidate
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• The attacker has a model of the electrical consumption / electromagnetic 

emission /…

• Attack steps:

• Choose a target intermediate value

• Compute a theoretical emission for this value for all key hypothesis

• Measure emission through several encryptions

• Compare measurements with theoretical values
• Highest correlation between theory and traces gives a key candidate
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PHYSICAL ATTACKS: SIDE-CHANNEL ATTACKS

…

AES
plaintexts
keys intermediate

values

ciphertexts

theoretical

emissions
HW(value)

N

256

Nx256

N traces

key hypothesis

which fits best

measurements

correlation

This is an example of how side channel 

attacks can be mounted.

BUT: they can target other kind of 

applications (web browsers, verifypin, …), 

and can also be used to help monitoring 

fault injection attacks



| 17CPSEd 2017 | Belleville Nicolas

PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

Plaintext Bad ciphertext

Key
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data
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PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext
• Use a model of the fault like instruction skip or data nullified
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PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext

• Collect the ciphertexts for all plaintexts while faulting the chip
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext

• Collect the ciphertexts for all plaintexts while faulting the chip

• Compare ciphertexts obtained with the theoretical ones
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• General approach:

• Divide and conquer: the key is recovered bit by bit or byte by byte

• Perform a fault during encryption

• The encryption will generate a bad ciphertext

• Compare the bad ciphertext with the reference one

• Attack steps:

• Choose a target instruction or data

• Compute the effect of the fault for all keys and plaintexts on the ciphertext

• Collect the ciphertexts for all plaintexts while faulting the chip

• Compare ciphertexts obtained with the theoretical ones
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PHYSICAL ATTACKS: FAULT INJECTION ATTACKS

…

AES
plaintexts
keys

fault to be injected here

Bad ciphertexts

N

256

Nx256

Bad ciphertexts

N

Comparison

Key byte which fits best the 

effects observed

This is an example of how fault injections 

can be used.

BUT: they can target other kind of 

applications! (bootloaders, verifypin, …)
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The key is 

qshgoq
• Side-channel:

• Hiding
• Lower the SNR (Signal Noise Ratio) in measurements

• Masking
• Break the direct link between emissions 

and the key

• Fault injection attacks:

• Fault tolerance
• A fault won’t change the behavior of 

the program

• Fault detection
• A fault will be detected and put the 

program/chip in a predefined state
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COUNTERMEASURES

BLAHBLAHBLAH

I’m fine

Sorry, I’m on 

sick leave

Good output

No output

The key 

combined with 

randomness is 

qshgoq
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• Side-channel:

• Dual rail with precharge logic
• 0 and 1 are encoded with (0,1) and (1,0) couples

• Output of each gate is precharged with either (0,0) or (1,1)

• Hamming weight and Hamming distance are independent of data

• Insert noise
• Random voltage scaling

• Variable clock speed (temporal desynchronization)

• Filter power consumption
• Make the power consumption as constant as possible

CPSEd 2017 | Belleville Nicolas

HARDWARE COUNTERMEASURES

first:

second:

} =

} =

unaligned

c
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• Fault injection attacks:

• Encapsulation
• Prevent the attack by making the access to components hard

• Detector of light emission / magnetic field
• Detect signals which may be related to a fault injection

• Integrity
• Check the absence of control flow corruption (CFI)

• Check data integrity

• Error correcting memory
• The memory is able to correct a certain number 

of errors in the data
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HARDWARE COUNTERMEASURES

data

memory
faulted

memory
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correct
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• Side-channel:

• Dual rail with precharge logic

• Insert noise

• Filter power consumption

• Fault injection attacks:

• Encapsulation

• Detector of light emission / magnetic field

• Control flow integrity

• Error correcting memory

• Problems / Limitations:

• Requires expertise

• Takes time to implement

• Costly hardware

• Impossible to update

• Countermeasure is applied everywhere, even on uncritical code

CPSEd 2017 | Belleville Nicolas

HARDWARE COUNTERMEASURES
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• Side-channel:

• Instructions shuffling & Temporal desynchronization
• Make alignment of measurements fail

• Dependency analysis between instructions based on registers used or defined

• Masking
• Combine the key with a random number to change the profile of the leakage

• All the algorithm is modified so that everything is computed using the masked 

key
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SOFTWARE COUNTERMEASURES

for (i=0; i<n; i++) {

k = rand(possible_values);

T[k]=T[k]+1;

}

asm {

add r3, r3, #1

sub r6, r7, #3

}

choose randomly at runtime

between the 2 forms

iterate in random order

mask = rand();

masked_key = key xor mask;

a = a xor key;

b = a;

return b;

a = a xor masked_key;

b = a;

return b xor mask;

everything is computed masked

the mask is removed from the result at the end

asm {

sub r6, r7, #3

add r3, r3, #1

}

if (rand(2)) {

} else {

}
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• Fault injection attacks:

• Code duplication 
• Some parts of the code are duplicated / Duplication of all instructions

• Tolerance of one instruction-skip fault

• Control flow integrity 
• At each basic block, check that we come from a legitimate basic block

• Detection of instruction-modification fault that change the control flow

• Error detecting codes throughout the algorithms
• Add a parity bit to the variables and keep trace of it

• Detection of data-corruption fault
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SOFTWARE COUNTERMEASURES

if (password == “ok”) {

if (password == “ok”) { … }

}

add r3, r4, #1 add r3, r4, #1

add r3, r4, #1


1

3
2

4

check that we come from 2 or 3

check that we come from 1

011001010

011001011

Ok

Error !

duplicate code duplicate instructions
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• Side-channel:

• Instructions shuffling & Temporal desynchronization

• Masking

• Fault injection attacks:

• Code duplication 

• Control flow integrity 

• Error detecting codes throughout the algorithms

• Problems:

• Requires expertise

• Takes time to implement

• Implementation on every critical functions

• Compilation can optimize out countermeasures

• Performance cost

CPSEd 2017 | Belleville Nicolas

SOFTWARE COUNTERMEASURES
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SOFTWARE COUNTERMEASURES

Automatically apply them ?
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• Side-channel:

• Instructions shuffling & Temporal desynchronization

• Masking

• Fault injection attacks:

• Code duplication 

• Control flow integrity 

• Error detecting codes throughout the algorithms

• Problems:

• Requires expertise

• Takes time to implement

• Implementation on every critical functions

• Compilation can optimize out countermeasures

• Performance cost
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SOFTWARE COUNTERMEASURES

Automatically apply them ?

HOW ?
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• Steps to do once:

• Write a parser

• Write a transformation pass for critical parts

• Write a file emitter for targeted format

• Steps to do for every file:

• Transform file

• Compile file

• Disassemble file

• Check that countermeasures are still here

• Disabling compiler optimizations (-O0) to skip the checking phase 

is a bad idea

• Horrible performance

• Register spilling → new leakage

• References that use this approach: [Eldib, LNCS, 2014] [Lalande, LNCS, 

2014] [Luo, ASAP, 2015] 

CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ SOURCE CODE
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• Steps to do once:

• Update the parser

• Add a transformation pass to transform critical parts

• Check once for all that later transformations do not threaten the 

countermeasure

• If necessary, deactivate or transform some of them

• Steps to do for every file:

• Compile file

• The code resulting is correctly optimized

• References that use this approach: [Agosta, IEEE TCAD, 2015] [Agosta, 

DAC, 2012] [Agosta, DAC, 2013] [Barry, CS2, 2016] [Bayrak, IEEE TC, 2015] [Malagón, 

Sensors, 2012] [Moss, LNCS, 2012] 

• [Bayrak, IEEE TC, 2015]: hybrid approach between the “assembly” and “within 

the compiler” approaches. Uses the compiler to decompile a binary file up 

to an intermediate representation before applying the countermeasure.
CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ WITHIN THE COMPILER

no need to be a security expert here
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• Steps to do once:

• Write a parser

• Write analysis passes which reconstruct some higher level information if 

necessary

• Write the transformation

• Write a file emitter

• Steps to do for every file:

• Compile the file

• Disassemble it

• Transform it

• Reassemble it

• The resulting code is secured but performance can be affected

• Compiler uses registers as if they won’t be used for something else

• The need for additional registers while applying countermeasure may lead 

to register spilling

• References that use this approach: [Bayrak, DAC, 2011] [Moro, 2014] [Rauzy, 

JCEN, 2016] CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ ASSEMBLY CODE

no need to be a security expert here
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Level Team Approach

Source 

code

Lalande & al.

Eldib & al.

• CFI applied on C code

• Use clang as a parser and apply Masking with a 

SMT solver

Within the 

compiler

Agosta & al.

Barry & al.

• Modified LLVM (new passes & modified passes). 

Hiding applied automatically. 

• Modified LLVM (new passes & modified passes). 

Instruction Duplication applied automatically. 

Assembly 

code

Bayrak & al.

Moro & al.

• Random precharging applied automatically.

• Instruction Duplication applied automatically.
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COUNTERMEASURES: HOW TO APPLY THEM ?

→ DETAILED EXAMPLES

• J.-F. Lalande, K. Heydemann, and P. Berthomé. Software Countermeasures for Control Flow Integrity of Smart Card C 

Codes. In European Symposium on Research in Computer Security, pages 200–218. Springer, 2014.

• H. Eldib and C. Wang. Synthesis of Masking Countermeasures Against Side Channel Attacks. In International 

Conference on Computer Aided Verification, pages 114–130. Springer, 2014.

• G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. The MEET Approach: Securing Cryptographic Embedded Software 

Against Side Channel Attacks. IEEE TCAD, 34(8):1320–1333, 2015.

• T. Barry, D. Couroussé, and B. Robisson. Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. In 

Proceedings of the Third Workshop on Cryptography and Security in Computing Systems, pages 1–6. ACM, 2016.

• A. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne. A first step towards automatic application of power 

analysis countermeasures. pages 230–235, 2011.

• N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson. Formal Verification of a Software Countermeasure Against 

Instruction Skip Attacks. Journal of Cryptographic Engineering, 4(3):145–156, 2014.
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Source 

code
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• CFI applied on C code
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COUNTERMEASURES: HOW TO APPLY THEM ?

→ DETAILED EXAMPLES

• J.-F. Lalande, K. Heydemann, and P. Berthomé. Software Countermeasures for Control Flow Integrity of Smart Card C 

Codes. In European Symposium on Research in Computer Security, pages 200–218. Springer, 2014.

• H. Eldib and C. Wang. Synthesis of Masking Countermeasures Against Side Channel Attacks. In International 

Conference on Computer Aided Verification, pages 114–130. Springer, 2014.

• G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. The MEET Approach: Securing Cryptographic Embedded Software 

Against Side Channel Attacks. IEEE TCAD, 34(8):1320–1333, 2015.

• T. Barry, D. Couroussé, and B. Robisson. Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. In 

Proceedings of the Third Workshop on Cryptography and Security in Computing Systems, pages 1–6. ACM, 2016.

• A. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne. A first step towards automatic application of power 

analysis countermeasures. pages 230–235, 2011.

• N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson. Formal Verification of a Software Countermeasure Against 

Instruction Skip Attacks. Journal of Cryptographic Engineering, 4(3):145–156, 2014.

For the same countermeasure, compiler approach reduced 

performance overhead from x2.86 to x1.92 and 

size overhead from x2.90 to x1.16 for MiBench AES
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Level Pros Cons

Source code • More or less 

straightforward

• Countermeasure can be 

optimized out during 

compilation

• Assembly code MUST be 

checked after compilation

Within the compiler • Provide security AND 

performance

• Optimizations can be 

controlled

• Harder to implement. 

• Requires to have access 

to the compiler source 

code

Assembly code • Countermeasure not 

optimized out

• Can even secure binary 

programs without their 

source code

• Can be hard to take all 

instructions into account 

or to do high level 

transformations

• Performance more 

affected

CPSEd 2017 | Belleville Nicolas

COUNTERMEASURES: HOW TO APPLY THEM ?

→ IN A NUTSHELL
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• Physical attacks are an important threat for cyber-physical 

systems

• They are the only effective way to break encryption

• Their range of target is broader than encryption

• Best security levels are reached by combining hardware and software 

countermeasures

• Securing is costly

• Automatic application of software countermeasures or automatic design of 

hardware with countermeasures can reduce this cost

• Compilation is usually forgotten in potential threats to 

countermeasures 

• source code ≠ binary 

• Securing during compilation is valuable

• Enables to optimize the performance cost of a countermeasure

• Hardware has to be taken into account too

• binary ≠ what is really executed

• Speculative execution within the processor
CPSEd 2017 | Belleville Nicolas

CONCLUSION
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• Physical attacks are an important threat for cyber-physical 

systems

• They are the only effective way to break encryption

• Their range of target is broader than encryption

• Best security levels are reached by combining hardware and software 

countermeasures

• Securing is costly

• Automatic application of software countermeasures or automatic design of 

hardware with countermeasures can reduce this cost

• Compilation is usually forgotten in potential threats to 

countermeasures 

• source code ≠ binary 

• Securing during compilation is valuable

• Enables to optimize the performance cost of a countermeasure

• Hardware has to be taken into account too

• binary ≠ what is really executed

• Speculative execution within the processor
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