Reinforcement Learning for CPS Safety Engineering

Sam Green, Çetin Kaya Koç, Jieliang Luo
University of California, Santa Barbara
Motivations
Safety-critical duties desired by CPS?

- Autonomous vehicle control: UAV, passenger vehicles, delivery trucks
- Automatically responding to, or preventing, damage
- Industrial robot control for use around humans
- Large process automation
 - E.g., optimization of factory
Reinforcement Learning
Machine Learning

- Supervised
- Unsupervised
- Reinforcement
Introduction to RL

• A computational approach to **learning from interaction**
 • Established in the 1980s
 • Objective is to take actions to maximize a reward (or minimize a cost)
 • Seen as a path toward Artificial General Intelligence

• RL is at the intersection between
 • Psychology
 • Control Theory
 • Computer Science/AI

• Resurgence with advent of deep learning methods
Advances in RL since 2015

<table>
<thead>
<tr>
<th>Method</th>
<th>Training Time</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQN</td>
<td>8 days on GPU</td>
<td>121.9%</td>
<td>47.5%</td>
</tr>
<tr>
<td>Gorila</td>
<td>4 days, 100 machines</td>
<td>215.2%</td>
<td>71.3%</td>
</tr>
<tr>
<td>D-DQN</td>
<td>8 days on GPU</td>
<td>332.9%</td>
<td>110.9%</td>
</tr>
<tr>
<td>Dueling D-DQN</td>
<td>8 days on GPU</td>
<td>343.8%</td>
<td>117.1%</td>
</tr>
<tr>
<td>Prioritized DQN</td>
<td>8 days on GPU</td>
<td>463.6%</td>
<td>127.6%</td>
</tr>
<tr>
<td>A3C, FF</td>
<td>1 day on CPU</td>
<td>344.1%</td>
<td>68.2%</td>
</tr>
<tr>
<td>A3C, FF</td>
<td>4 days on CPU</td>
<td>496.8%</td>
<td>116.6%</td>
</tr>
<tr>
<td>A3C, LSTM</td>
<td>4 days on CPU</td>
<td>623.0%</td>
<td>112.6%</td>
</tr>
</tbody>
</table>

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric.

Terminology

- **Agent** – The thing we are learning to control
- **Environment** – All the factors affecting the agent
- **Action** – Performed by agent in an attempt to affect change on the environment
- **Reward** – Returned by the environment to the agent after the agent makes an action. Used to help the agent learn.
 - AKA the negative cost
Markov Decision Process

• What RL solves
• Environments where agent’s decisions are only dependent on present
 • An object in flight
 • Self-driving car
 • Manufacturing process
 • Robot control
• It’s not that the past doesn’t matter, but the laws of physics guarantee certain things, e.g. momentum
• Methods also exist to solve approximate MDP
Example: Student Markov Chain

Start here at the beginning of each episode

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf]
RL for CPS Safety Engineering

• Interdisciplinary natures makes RL interesting for CPS engineering
 • AI, ML (Math, Statistics)
 • Mechanics design and simulation (ME, Physics, CS)
 • Programming and implementation (CS, EE)
Mountain Car Example
Canonical example: Mountain Car

- Agent is an underpowered car with 3 actions:
 - Backward, Neutral, Forward
- Reward := -1 per timestep
 - Implicit goal := Reach the flag as fast as possible
- State := x-pos and velocity

Model-Free Control via Policy-Based RL

- A simple physics model determines the behavior of car
 - Captures position of the car on the hill
 - Captures effect of limited engine power
- Using a physics model simplifies approach
 - Use an efficient traditional controller
- But in many scenarios the model is not available or too complex
 - Amazon package delivery drone
- Solve mountain car using sophisticated method as toy example
 - Directly train a neural network-based policy
RL Terminology and Notation

• S_t – State of the environment at time t
 • x-axis position and velocity
• A_t – Action taken by agent at time t
 • Backward, Neutral, Forward
• π – The policy function; returns the next action to take. Stochastic in this example
• θ – A parameter vector for the policy; i.e. the weights learned in a neural network

Putting everything together:
$$A_{t+1} \sim \pi_{\theta}(A_t, S_t) = P(A_t \mid S_t, \theta)$$
The policy π_θ

- π_θ is often approximated
- Deep neural networks are powerful for approximation
- We will use gradient ascent to optimize the DNN
The policy function π_θ, approximated by NN

- **State information at time t:**
 - Position and Velocity
- **Action options at time t:**
 - Forward acceleration
 - Neutral
 - Backward acceleration
Reward function

- At every time step take an action
 - Forward, neutral, backward
 - Each action has a reward of -1
 - Train agent to reach the flag in minimum time steps
Example: Markov Reward Process

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf]

Start here at the beginning of each episode
How to train the NN?

- Small networks can be effectively trained with genetic algorithms.
- Genetic algorithms work poorly with large networks (parameter space is too large).
- Gradient-ascent optimization works with large parameter space.
Monte-Carlo Policy Gradient (REINFORCE)

• Find DNN parameter vector θ such that π_θ maximizes the reward

• For every episode, until flag is reached
 • Get state information (position & velocity) from environment
 • Feed NN with state information
 • NN will output a probability for (F)orward, (N)eutral, and (B)ackward
 • Randomly select action F, N, and B (using the above probabilities)
 • Store the state information and action taken

• Once flag is reached
 • Assign the most reward to the last action ... least reward to the first action
 • Update θ s.t. actions made at the end are more probable

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html]
Monte-Carlo Policy Gradient

• Method leverages methods created for supervised learning
 • Inputs := the state information (position, velocity)
 • Predictions := forward, neutral, or backward action taken
 • Labels ("ground truth") := After the episode was over, assign most value to the last actions. Assign least value to the first actions

• Run many episodes, after each episode finishes (flag is reached) strengthen the network such that the last moves become more probable

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html]
Gradient-ascent

• Gradient algorithms find a local extremum
• At end of each episode, adjust each parameter in θ s.t. actions made near the end are strengthened
• How much and in which direction to move each parameter is determined by the backpropagation method
Caveats

• Deep RL is usually slow to learn

• Transferring knowledge from one problem to another is difficult

• Reward function can be complex
Safety and Security Considerations
Adversarial Examples In The Physical World
Safety and Security Considerations

• DNNs are black-box models
 • Possible to give an input which causes DNN to provide wild output

• Efforts to mitigate this limitation
 • E.g. Constrained Policy Optimization
Constrained Policy Optimization

- School-book RL specifies only the reward function
 - Problem: when an agent is learning, it may try anything
 - Potentially unsafe when training is in physical environment
- Constraints can be added to the objective function

[Achiam et al. “Constrained Policy Optimization”, 2017]
Current Efforts
Developing RL for Quadcopter Control

• Good case study for complex autonomous CPS
 • Collision avoidance
 • Target tracking
 • Package delivery

• Using open source firmware and hardware
Using Microsoft AirSim for 1st-order learning

Conclusions

• RL is a generalizable method to tackle many CPS decision making problems
 • High-capacity models can make sophisticated decisions

• Good approach for CPS education, because of interdisciplinary nature

• Open problems when using black-box functions for safety applications
Questions?