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Outline

= Objective — detect and counter faults in cyber physical systems

= Fault types
* Benign faults — increase reliability
* Malicious faults — increase security

= Known techniques to achieve these objectives
* High overheads

= Qur approach: Monitor the state of the physical plant
 Fit the level of protection to the current state sub-space

= Main challenge: Determine in real-time the state subspace
* Use Machine learning techniques
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Critical CPS applications

= Many CPSs control life-critical applications

* E.g., Aircrafts, Nuclear reactors,
Smart Buildings, Automobiles,
Medical Devices

* Must support high levels of safety and
provide timely response to benign and malicious faults

= Common techniques to detect and recover impose high overheads
 Hardware, performance, power
* Most focus on the cyber sub-system ignoring the physical plant

= Our approach: Detect faults and invoke adaptively proper
countermeasures
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Failures in Cyber-Physical Systems

= Computing side:
* Erroneous computer outputs due to HW SEUs,
SW bugs or maliciously modified SW

 Computational delays causing a deadline miss
F

= Physical side:

* Application specific
e E.g., failure in an inverted pendulum: angle = 90°

» Safety Space Constraints (SSC): The conditions that the
controlled plant must satisfy in order to operate safely

* E.g., inverted pendulum: angle should be < 0.5 rad, or 30°,
otherwise it is unsafe
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Fault Tolerance (FT) in CPS

= Traditional FT - continuous massive redundancy

* Duplex: two copies of a task running on two cores, can detect
faults

 TMR: three copies of a task
running on three cores, can
mask a single erroneous result
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Our approach — Adaptive Fault Tolerance

= Plant state based adaptive FT:

 |If the plant is deep within its safe region, can withstand some
erroneous control inputs

* In such a state, a lower level of FT can be deployed

* Need a definition of
» Safe region

* How to determine whether the plant is “deep” in the safe
region
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Physical Plant’s Safe State Space (S°>)

= Definition: The sub space of the states of the physical system that
meet the SSC (determined by the application engineer)

= Apointisin S3 if: SSC: Safety Space Constraints
* 1. The plant satisfies the SSCs at the present time, and
* 2. Based on
* (1) the controlled plant control laws,
* (2) the control algorithm used,
* (3) the actuator limitations,
* (4) the control task execution rate, and

* (5) the limits of the operating environment impact
the plant will continue to satisfy these constraints up to a
given horizon, as long as correct control inputs are applied
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Example: S> for inverted pendulum, horizon 15sec
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Sub-spaces of S3

= S1: Even if the controller generates the worst-case control
input until the next iteration of the control task, the plant will
not leave its S*

= S2: If the controller generates a default output (e.g., zero or
repeat the previous output), the plant remains in S®

= S3: If the controller produces an incorrect output, the plant is
not guaranteed to stay in S*

= (Benign) Fault Tolerance implications:
e S1: No fault-tolerance is required
e S2: It is sufficient for the computer to be fail-stop
* S3: Faull fault-masking is necessary
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Security in CPS

= Unique characteristics
of CPS

Limited computing
resources

Often limited power

Often inaccessible
location

Network connectivity
Physical exposure

= Vulnerabilities

Network intrusion
Exhaustion attack
Information theft

Modifying software (code
injection or reprogramming)

Physical tampering (side
channel attacks)

Modifying sensor output
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Classifying Security Threats in CPS

= Distinguish between two malicious objectives
 Harming physical plant operation vs.
» Stealing propriety information

 Stealing information - well-known threat in general computing
systems

 Various cryptographic schemes can be employed
= Threats to the physical plant operation can be detected by
« Common techniques to detect intrusion & software modification
* E.g., code analyzers, anomaly detection, sandboxing
« Often have a high overhead for constrained CPSs

* Never achieve 100% coverage as new attacks are developed
(hard to update countermeasures)
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Our approach to deal with security threats in CPS

= Must first detect the threat and if possible recover

=  Monitor the state of the plant and identify marginal states
* The marginal state is likely to be the result of a fault
* The exact nature of the fault is unknown
* (1) A benign fault requiring fault tolerance measures
* E.g., execute two copies of the control task on two cores
* (2) A malicious attack on the control task
* Must use a different version of the control task
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Counteracting security threats in CPS

=  Assume first that it is a benign fault — duplicate the control task

 |If the state remains marginal — replace the current version of the
control task by a second version

* Second version should follow a simpler control algorithm
* More robust, shorter execution time but lower quality
* Can be useful even for dealing with benign SW bugs
 |f the plant state is still marginal execute emergency procedure
* Use a default control (even an open-loop scheme)
* Inform remote operator

= Detecting a threat to the safe operation of the physical plant is the
most significant step
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Challenge: Determine current sub-space in real-time

= Given the current state of the physical plan how to decide
which sub-space it belongs to?

e Storage constraints
* Timing constraints

= Use machine learning schemes to identify boundaries
between sub-spaces

* Hopefully requiring only a few parameters

= Standard Machine Learning (ML) algorithms for
classification problems:

* E.g., Logistic Regression, Neural Networks, Support Vector
Machine (SVM)
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Safety Critical Issues

= Can not guarantee 100% classification accuracy
= Need a way to make it conservative

= Misclassification from S1 to S2 or even S3 is allowed, only
wasting computing resource; from S3 to S1 is not allowed

= Classification algorithms produce a 1 if the calculated
probability is greater than a threshold

 Default 0.5

= Can iteratively adjust this threshold value, until no dangerous
misclassifications exist
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Real-Time Task Optimization - example

= |nputs:
* Number of available copies & number of versions for each task
* Power consumed by each version of every task
* Current temperature of each processor T,,,.(t)

= Qutput:

* Preferred version for each task (Note: need to generate classifier
for each version of every task)

= System objective: e.g., minimize aging of processors due to high
operating temperature

 All circuit fault mechanisms rates exponentialin T (e.g., electro-
migration, dielectric breakdown and stress migration)

 Thermal Age Acceleration Factor (TAAF) (- E, )
TAAF = e KTproc(t)
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Examples of online plant state classification

" [nverted pendulum

= Anti-lock Braking System (ABS) in a car
= Highway platoon

= Humanoid Robot
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Inverted Pendulum

= Real-time control algorithm: I
|

 Linear Quadratic Regulator (LQR) - classical optimal contrdl
algorithm

= Safe State Constraints (SSC): ’
« —0.5<50<0.5 rad F -

= Upper and Lower Bounds of the control force: 40 N
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Training Algorithms (Inverted Pendulum)

LR NN SVM
Trained Parameters Size 15 153 T88
Training Accuracy 85.8% 99.92% 99.98%

COMPARISON OF LEARNING ALGORITHMS FOR
INVERTED PENDULUM

Angle Angle Rate Predicted Actual
-0.3900 -0.1800 3.0000 2.0000
-0.3100 0.1600 3.0 2.0

0.3100 -0.1600 3-{].§,§ Z.CL,S._.?,
0.3900 0.1800 3.0000 2.0000

TRAINING PERFORMANCE OF NEURAL NETWORKS FOR
INVERTED PENDULUM
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Anti-Lock Braking System (ABS)

= Prevent wheels from locking up
during hard braking 4000

Fx vs slip ratio

*  30m/s
o o o #  20m/s : grs— :
= Also maximize braking forces 000 e qomis] T AR —
generated by the tires to get small 2000} y
stop distance i

= The most important parameter is
the Slip ratio

Force (N)
o
®

. ) TeffOyw— X

« Slip_ratio: o,= effxw

* @, isthe wheel speed, x is the car , , F
SpQEd 08 06 04 02 0 0z 04 06 08 1

slip ratio (1x)

» Largest longitudinal friction force is
achieved for a slip value around 0.15
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ABS in a Car

= State vector
* [vehicle speed v, wheel speed ® ]
= Real-time control algorithm:
* Proportional Integral Derivative (PID)

= SSC: in order to have a final stopping distance smaller than
a threshold, the slip ratio must be within a certain range

 Slip ratio = [0.05, 0.25]
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SSC and the state sub-spaces
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Training process for 3 ML techniques

= Logistic Regression, Neural Networks, SVM
all achieved 100% training accuracy

= Using 15, 93 or 138 parameters

Algorithm LR NN SVM
No. of Parameters || 15 03 138
Accuracy 100% | 100% | 100%
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Platoon System (Automated Highway)

= An example of an application with multiple individuals
systems communicating with each other

= Carsim: a commercial software for automotive design, can
simulate automated highway - ' -
integrated with our SW tool

= Experiments:
* A leader-follower system

= Ensure safety - do not allow cars
to collide

= Following car uses a sensor to measure distance from leading car
= Leading car sends its speed wirelessly to following car
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Sub-spaces of the Following Car
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Platoon Case Study with Multiple Task Versions

= Each control task has two versions:
e Version 1 (complex version):
e Constant Time Gap algorithm for Adaptive Cruise Control
* Period: 10 ms to 80 ms
* Version 2 (the simple version):
* PID with pre-determined desired velocity and distance
= The distance between two cars is the quality of control constraint

= The version for the control task will switch during the drive
depending on the current sub-space
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Trade-off between Reliability & Quality of Control
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Comparing classification schemes - Platoon

Algorithm LR NN SVM
No. of Parameters || 15 153 788
Accuracy 78.56% | 99.58% | 99.62%
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Check for benign faults and then for malicious ones
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# of steps with wrong control to exit innermost S1

1.0
Cumulative 0.6
probability of
leaving the
innermost
S1 0.2
(for 400 ms)

0 20 40 60 80 100 120 140
# of steps with worst-case control input (every 50 ms)
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Humanoid Robot
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Three control tasks, U1, U2 and U3, adjusting the
torques at the ankle, knee and hip, respectively
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Sub-spaces and classification schemes

N vl {Baseline)
.
- =
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Sub-spaces

Size
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Algorithm Neural Network | Random Forest | Decision Tree
Accuracy 99.6% 97% 97%
Prediction Time | 3ms [ms 0.0096ms
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Reliability vs Quality of Control (QoC)

9.3
- I - —« Developed the AdaFT tool
- that includes the
9.1 " ~ ' classification process and
> 5 ., System optimization to
w s ; determine the tasks'’
EB.Q' version and rate

BB o—a MTTF All On
¥ #—& MTTF AdaFT
& MTTF AdaFT DVFS
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Lower QoC '

E




Conclusions

= Benefits of monitoring the current state of the physical
plant

* Achieve high reliability at a lower cost

* Detect malicious attacks targeting the physical plant’s
operation (rather than attempts to access proprietary
information)

* Such attacks are dangerous in a CPS
* Allow recovery from some malicious attacks
e Can always detect and invoke emergency response

* Must have an efficient scheme to classify the state sub-space
in real-time
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