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Outline

 Objective – detect and counter faults in cyber physical systems

 Fault types

• Benign faults – increase reliability

• Malicious faults – increase security

 Known techniques to achieve these objectives

• High overheads

 Our approach: Monitor the state of the physical plant

• Fit the level of protection to the current state sub-space

 Main challenge: Determine in real-time the state subspace

• Use Machine learning techniques
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Critical CPS applications

 Many CPSs control life-critical applications

• E.g., Aircrafts, Nuclear reactors,                                                           
Smart Buildings, Automobiles,                                                              
Medical Devices

• Must support high levels of safety and                                                
provide timely response to benign and malicious faults 

 Common techniques to detect and recover impose high overheads

• Hardware, performance, power 

• Most focus on the cyber sub-system ignoring the physical plant

 Our approach: Detect faults and invoke adaptively proper 
countermeasures
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Failures in Cyber-Physical Systems

 Computing side: 

• Erroneous computer outputs due to HW SEUs,                            
SW bugs or maliciously modified SW

• Computational delays causing a deadline miss

 Physical side:

• Application specific

• E.g., failure in an inverted pendulum: angle ≥ 90

• Safety Space Constraints (SSC): The conditions that the 
controlled plant must satisfy in order to operate safely

• E.g., inverted pendulum: angle should be ≤ 0.5 rad, or 30, 
otherwise it is unsafe
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Fault Tolerance (FT) in CPS

 Traditional FT - continuous massive redundancy

• Duplex: two copies of a task running on two cores, can detect 
faults

• TMR: three copies of a task                                                                 
running on three cores, can                                                                      
mask a single erroneous result

voter
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Example: Boeing 777 (early design)

ADIRU

ADIRU

ADIRU

Analog

Analog

Analog

429
Sensors

L

429
Sensors

C

429
Sensors

R

I/O

V COMPUTATION

COMPUTATION

COMPUTATION

V

V A
R
IN

C
 6

2
9
 B

u
s
e
s

V

V

V

MANUAL

AP

MANUAL

AP

MANUAL

AP

A
R
IN

C
 6

2
9
 B

u
s
e
s

ACE PCU

ACE PCU

ACE PCU

Life-critical CPS



7

TMR with design diversity
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Our approach – Adaptive Fault Tolerance

 Plant state based adaptive FT:

• If the plant is deep within its safe region, can withstand some 
erroneous control inputs 

• In such a state, a lower level of FT can be deployed 

• Need a definition of 

• Safe region

• How to determine whether the plant is “deep” in the safe 
region
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

SSC: Safety Space Constraints 
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 S1: Even if the controller generates the worst-case control 
input until the next iteration of the control task,  the plant will 
not leave its S³

 S2: If the controller generates a default output (e.g., zero or 
repeat the previous output), the plant remains in S³

 S3: If the controller produces an incorrect output, the plant is 
not guaranteed to stay in S³

 (Benign) Fault Tolerance implications:

• S1: No fault-tolerance is required

• S2: It is sufficient for the computer to be fail-stop

• S3: Faull fault-masking is necessary
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Security in CPS

 Unique characteristics    
of CPS

• Limited computing 
resources 

• Often limited power

• Often inaccessible 
location

• Network connectivity

• Physical exposure

 Vulnerabilities  

• Network intrusion

• Exhaustion attack

• Information theft

• Modifying software (code 
injection or reprogramming)

• Physical tampering (side 
channel attacks)

• Modifying sensor output
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Classifying Security Threats in CPS

 Distinguish between two malicious objectives 

• Harming physical plant operation vs. 

• Stealing propriety information

• Stealing information - well-known threat in general computing 
systems 

• Various cryptographic schemes can be employed

 Threats to the physical plant operation can be detected by

• Common techniques to detect intrusion & software modification

• E.g.,  code analyzers, anomaly detection, sandboxing

• Often have a high overhead for constrained CPSs

• Never achieve 100% coverage as new attacks are developed 
(hard to update countermeasures)
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Our approach to deal with security threats in CPS

 Must first detect the threat and if possible recover

 Monitor the state of the plant and identify marginal states

• The marginal state is likely to be the result of a fault

• The exact nature of the fault is unknown

• (1) A benign fault requiring fault tolerance measures

• E.g., execute two copies of the control task on two cores

• (2) A malicious attack on the control task

• Must use a different version of the control task
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Counteracting security threats in CPS

 Assume first that it is a benign fault – duplicate the control task

• If the state remains marginal – replace the current version of the 
control task by a second version

• Second version should follow a simpler control algorithm

• More robust, shorter execution time but lower quality

• Can be useful even for dealing with benign SW bugs

• If the plant state is still marginal execute emergency procedure

• Use a default control (even an open-loop scheme)

• Inform remote operator

 Detecting a threat to the safe operation of the physical plant is the 
most significant step
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Challenge: Determine current sub-space in real-time

 Given the current state of the physical plan how to decide 
which sub-space it belongs to? 

• Storage constraints

• Timing constraints

 Use machine learning schemes to identify boundaries 
between sub-spaces 

• Hopefully requiring only a few parameters

 Standard Machine Learning (ML) algorithms for 
classification problems:

• E.g., Logistic Regression, Neural Networks, Support Vector 
Machine (SVM)
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Safety Critical Issues

 Can not guarantee 100% classification accuracy 

 Need a way to make it conservative 

 Misclassification from S1 to S2 or even S3 is allowed, only 
wasting computing resource; from S3 to S1 is not allowed

 Classification algorithms produce a 1 if the calculated 
probability is greater than a threshold 

• Default 0.5

 Can iteratively adjust this threshold value, until no dangerous 
misclassifications exist
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Real-Time Task Optimization - example


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Examples of online plant state classification

 Inverted pendulum

 Anti-lock Braking System (ABS) in a car

 Highway platoon

 Humanoid Robot
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Inverted Pendulum


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Sub Spaces and Decision Boundaries

Max Cart velocity0
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Training Algorithms (Inverted Pendulum)

S3 S2
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Anti-Lock Braking System (ABS)

 Prevent wheels from locking up 
during hard braking

 Also maximize braking forces 
generated by the tires to get small 
stop distance

 The most important parameter is 
the Slip ratio 
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ABS in a Car

 State vector

• [vehicle speed v, wheel speed  ]

 Real-time control algorithm:

• Proportional Integral Derivative (PID)

 SSC: in order to have a final stopping distance smaller than 
a threshold, the slip ratio must be within a certain range

• Slip ratio = [0.05, 0.25]
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SSC and the state sub-spaces

SSC
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Training process for 3 ML techniques

 Logistic Regression, Neural Networks, SVM     
all achieved 100% training accuracy 

 Using 15, 93 or 138 parameters
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Platoon System (Automated Highway)

 An example of an application with multiple individuals 
systems communicating with each other

 Carsim: a commercial software for automotive design, can 
simulate automated highway -
integrated  with our SW tool 

 Experiments:

• A leader-follower system

 Ensure safety - do not allow cars                                                         
to collide

 Following car uses a sensor to measure distance from leading car

 Leading car sends its speed wirelessly to following car
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Sub-spaces of the Following Car

(a) 3D Plot for Sub-
spaces

(b) Cross Section Plot 
with Distance Fixed at 
40 meters

(c) Cross Section Plot 
with Leading Car Speed 
Same as Follower
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Platoon Case Study with Multiple Task Versions

 Each control task has two versions:

• Version 1 (complex version):

• Constant Time Gap algorithm for Adaptive Cruise Control

• Period: 10 ms to 80 ms

• Version 2 (the simple version):

• PID with pre-determined desired velocity and distance

 The distance between two cars is the quality of control constraint

 The version for the control task will switch during the drive 
depending on the current sub-space
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Trade-off between Reliability & Quality of Control

TAAF: Thermal Age Acceleration Factor

Execute the 
simpler 
version (PID) 
more often
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Comparing classification schemes - Platoon
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Check for benign faults and then for malicious ones

Task_period=50ms;  Innermost S1 defined for Task_period=400ms
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# of steps with wrong control to exit innermost S1

1.0
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0.2

Cumulative 
probability of 
leaving the 
innermost  
S1              
(for 400 ms)

# of steps with worst-case control input (every 50 ms) 
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Humanoid Robot

Three control tasks, U1, U2 and U3, adjusting the 
torques at the ankle, knee and hip, respectively

U1       U2          U3
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Sub-spaces and classification schemes
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Reliability vs Quality of Control (QoC)

Developed the AdaFT tool 
that includes the 
classification process and 
system optimization to 
determine the tasks’ 
version and rate

Lower QoC
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Conclusions

 Benefits of monitoring the current state of the physical 
plant

• Achieve high reliability at a lower cost

• Detect malicious attacks targeting the physical plant’s 
operation (rather than attempts to access proprietary 
information)

• Such attacks are dangerous in a CPS

• Allow recovery from some malicious attacks

• Can always detect and invoke emergency response

• Must have an efficient scheme to classify the state sub-space 
in real-time


