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Begin at the beginning

What is a digital system?

Working definition:
A physical system designed to have discrete combinatorial states
and to perform information processing

physical system: ultimately subject to contingencies and
uncertainties like other physical systems – it’s amazing how often
we can ignore this but how difficult things get when we can’t

discrete: typically Boolean, the states are “attractors” for the
underlying continuous physics (e.g., 0 and 5 volts) and make
digital systems deterministic and lossless in many cases

combinatorial: a large number of elements can change
independently, creating vast combinations to store information
(N bits give 2N states)

information processing: transforming discrete inputs into discrete
outputs using logic operations
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Systems engineering raises the stakes

Sandia missions use digital systems to control and simulate
high-consequence physical systems

Digital hardware and software are coupled with these other
systems, forming high-consequence cyber-physical systems
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Mathematics shows the limits of understanding
logic

Theorem (Turing 1936, Rice 1953): No algorithm exists to
predict a priori the behavior of a generic information processing
system

i.e., such a system is undecidable even if deterministic

Practical significance: A real system, with a finite exponentially
large number of states but otherwise generic, is effectively
undecidable – in particular, testing cannot tell us all its possible
behaviors

We need to bound all possible behaviors to quantify safety and
security

Further complication: Digital systems are also physical

We have to deal with “rare events”
where logic isn’t the whole story
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What is the solution space?

Formal methods (reduced complexity)

Automated reasoning about all possible behaviors within a
model – widely used in industry

Model checking, theorem proving

Scaling limitations, though power and tractability have improved
over time

Complex systems theory (structured complexity)

Probabilistic analysis of response of networks to perturbations

Well suited to understand emergent system-level robustness, but
only sparingly applied to engineered digital systems

In both strategies, systems must be constrained to be analyzable

Ideal approach is to consciously design-in analyzability and
robustness along with functionality
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Careful consideration is needed to verify digital
computations interacting with continuous physics

In many applications, real numbers are not only represented
digitally but are also present as actual continuous dynamics
coupled via transducers – forming a hybrid or cyber-physical
system

Most existing formal methods apply to purely digital systems

Formally modeling and analyzing hybrid systems is an important
challenge

Need to ensure models are physically consistent and well-posed

Need to reason flexibly about continuous and discrete state
spaces

Here we discuss a theorem-proving approach that captures key
aspects needed for more powerful reasoning about hybrid systems
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Buridan’s Principle constrains analog-digital
interaction

All known physical processes have continuous dependence on
initial conditions

The same should hold for any physical implementation of digital
logic

Thus a continuous input at time tj cannot be guaranteed to
result in a discrete decision at any finite later time ti

By the intermediate value theorem, there is some (perhaps
unlikely) range of states at tj that leaves the system still
undecided at ti – e.g., partway between digital 0 and 1

This is Buridan’s Principle (Lamport 1984)

The presence of random noise does not change the argument –
there is still a finite probability to remain in an intermediate state
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An idealized hybrid system illustrates modeling
issues

Consider a thermostat designed to maintain an object’s
temperature T in a desired range above ambient temperature

Gain from “instantaneous” heat pulse: applied at uniform time
intervals if T is below a threshold

Loss to environment: linear cooling law

Buridan’s Principle says no device can guarantee that either a
full heat pulse or none is applied at a specific time

This example can tolerate indecision because, when either a full
heat pulse or none is acceptable, an intermediate amount is also
acceptable
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An idealized hybrid system illustrates modeling
issues

Mathematical description
consists of temperature
T : R≥0 → R, “arbiter”

θ̃ : R→ R, and
parameters
α,H,T∗, ε ∈ R>0

Arbiter approximates unit
step function: bounded
between 0 and 1, with
θ̃(∆) = 1 for ∆ > ε, and
θ̃(∆) = 0 for ∆ < −ε
For n ∈ N, given T (n) as the temperature just before a potential
heat pulse at time n, the temperature evolves causally as

T (t) =
(
T (n) + H θ̃

(
T∗ − T (n)

))
e−α(t−n) for all t ∈ (n, n + 1]
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Bounds on temperature can be proved informally

Seek a guarantee on thermostat performance: maintaining the
temperature in a range [A,B] with 0 < A < B <∞

If T (0) ∈ [A,B], then T (t) ∈ [A,B] for all t ∈ R≥0

This will follow by induction if the following holds for all n ∈ N

If T (n) ∈ [A,B], then T (t) ∈ [A,B] for all t ∈ (n, n + 1]

Given the constraints on the arbiter θ̃, we can show the property
holds provided

0 < A ≤ min

(
H

eα − 1
, (T∗ − ε)e−α

)
and B ≥ T∗ + ε+ H
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Buridan’s Principle is reflected in the formal
analysis

Coq definition of θ̃

Parameter eps : R.
Parameter theta tilde : R → R.
Hypothesis theta tilde bound : ∀ d, 0 ≤ theta tilde d ≤ 1.
Hypothesis theta tilde 1 : ∀ d, d > eps → theta tilde d = 1.
Hypothesis theta tilde 0 : ∀ d, d < -eps → theta tilde d = 0.

Coq proof assistant lets us mix definitions using axiomatic real
numbers with our inductive formulation of the discrete system

Notice that hypotheses theta tilde 0 and theta tilde 1 involve
decisions on comparisons of real numbers

Even though the comparison is computationally undecidable, it
is nonetheless easily provable via axioms
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Bounds on temperature can be proved in Coq

Given our definitions – temperature computation and continuous
physical environment, we can show that our system will keep the
temperature within some (continuous) bounds

Formal proof: Temperature is bounded

Theorem T in interval (Tn tau : R) (tau bnd : 0 < tau ≤ 1) :
A ≤ Tn ≤ B → A ≤ T Tn tau tau bnd ≤ B.

Proof.
intros HAB. decompose record HAB. split.

destruct (Rlt le dec Tn (Tstar - eps)).
apply Tn heat keeps above; auto.
apply Tn no heat keeps above; auto.

destruct (Rle lt dec Tn (Tstar + eps)).
apply Tn heat keeps below ; auto.
apply Tn no heat keeps below ; auto.

Qed.
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Systems analysis can incorporate out-of-nominal
electrical behavior

Research is extending digital systems analysis to address physical
environments where a device is not fully digital anymore

Mixed-signal simulation can elucidate the digital imprint (e.g.,
bit flip pattern) of a physical insult (e.g., radiation) on a circuit

Using analog electrical model for the part of the circuit subjected
to the insult

By including digital upsets in a formal or complexity model,
effect on rest of the digital state space can be quantified and
mitigated

Example: Does a digital safety property still hold even in an
accident scenario?
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Broader principles support robustness in
complex systems

Biological and social complex systems typically are not formally
verified, but show impressive robustness to unforeseen failures

Why? They have inherent stability constraints from their origins
in adaptation and selection

Our hypothesis: Digital designs constrained by formal methods
also exhibit enhanced robustness to unforeseen failures by a
similar mechanism
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Outsize benefits of up-front formal modeling have
been noted in practice

Key observation: Design for analysis yields increased robustness,
regardless of when or even whether the analysis is performed

Faults and vulnerabilities are reduced if the developer starts with
a high-level formal model – even if no further verification is done
and even if the implementation is not explicitly constrained
(Woodcock et al. 2009)

This supports our hypothesis that robustness is conferred
because of design characteristics promoted by the formal
modeling process

By contrast, formal verification after the fact does not increase
robustness more broadly, if the design was not formally informed
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Complex adaptive dynamical systems offer a useful
perspective on hardware and software

As dynamical systems, today’s typical digital designs are chaotic

Formal methods, by contrast, enforce bounded behavior, similar
to that seen in complex systems adapted to their environments

To be useful (engineering) or viable (evolution), an adaptive
dynamical system must show a coherent response, neither
strongly overdamped/inert nor profoundly chaotic/random

At the “edge of chaos” (critical) or somewhat below it
(subcritical), broad robustness to perturbations is obtained

Subcriticality or “smoothness” generalizes the constraints
imposed by formal analyzability

Restricted programming models also extend the power of testing

New programming models with intrinsic smoothness could enable
more confident generalization of correctness to untested inputs

Empirically, incidence of vulnerabilities does differ measurably
based on programming language
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Boolean networks provide a simple representation
of digital logic

Originally investigated in biology, Boolean networks (BNs)
correspond closely to hardware sequential logic gates

Each node in the directed graph has two possible states, 0 and 1

A node’s state transition at each discrete time step is
determined from its input connections by a “transfer function”

Create BNs that add two 1-bit numbers (half-adder function),
by random sampling and selection

This function is very simple, but we seek BNs representative of
more complex implementations

BN ensembles differ in average inputs per node (k)

Select 20-node BNs that compute the correct result for all inputs
when operating nominally, and then introduce 1% bit errors to
evaluate robustness

Cascading errors are outlined in red
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Boolean network “programs” exhibit quiescence for
k < 2 and chaos for k > 2

Figure from J. R. Mayo et al., Proc. 9th IEEE Systems Conference, doi:10.1109/SYSCON.2015.7116737. c© 2015 IEEE.
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Formal verification confirms insights from
dynamical systems theory

While BN stability is relevant well beyond the reach of
exhaustive verification, the example half-adder BNs are simple
enough to check directly with formal methods

With the NuSMV model checker, we exhaustively prove/disprove
correct function of these two BNs in the presence of bit errors

Using a nondeterministic model that allows any single bit error
during a range of time steps

Example correctness requirement for carry bit:
LTLSPEC F ((clock=20) & (n18 = (n00&n01)))

NuSMV results: Chaotic BN is susceptible to corruption from
any time step, whereas quiescent BN can be corrupted only in
the last 5 of 20 time steps and is self-healing otherwise
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Failure modes can be understood via abstractions

Examples of failures that result in an overapproximation:

A logic gate becomes unreliable and nondeterministic

A sensor fails, providing random input to a digital control

Generally: any malfunction that generates additional
behaviors that were not part of the design intent

Errors induced by environmental physics are common:

Radiation (cosmic rays, etc.)

Heating (fire, etc.)

Physical insult (destruction of sensor, etc.)

Abstraction techniques can reveal failure modes for which a
particular design will be robust

Abstraction techniques can support designed-for failure modes
anticipating likely accidents and faults
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Square diagram shows refinement relationships that
preserve requirements

Figure from J. R. Mayo et al., Proc. 4th FTSCS Workshop, CCIS 596, doi:10.1007/978-3-319-29510-7 10. c© 2016 Springer.

Refinement/abstraction conceptual diagram for treating
out-of-nominal and nominal models in a unified way

Arrows point in the direction of abstraction
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Existing abstractions reveal in what ways a system
is robust

If abstractions used in proving safety properties for the nominal
design (e.g., via CEGAR) can be reinterpreted as a manifestation
of faults, then this:

Gives the digital designer an idea of what out-of-nominal
conditions the system is robust to – for free

Suggests that the design can be intentionally engineered to
preserve critical safety properties for anticipated failure modes
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A supercomputer is itself a complex system with
out-of-nominal behavior

High-performance computing (HPC) faces a resilience problem

Sheer scale (hundreds of thousands of processors) magnifies
previously negligible hardware errors even for a correct program
in a nominal environment

Physics simulation (main HPC application) is a highly
non-generic program; we can take advantage of its structure and
smoothness

Numerical analysis already addresses stability to truncation errors

Idea: Extend the mapping between the digital computation and
the physics being simulated, so that the computation gains
similar inherent stability to faults

An instance of algorithm-based fault tolerance

Analogy between extreme-scale HPC and small-scale
remote/portable embedded computing: Both are typically
power-constrained
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Problem: Future HPC platforms will face tradeoffs
imperiling correct hardware function

Hardware correction already attempts to hide many
“out-of-nominal” behaviors from the application

Error correction for bit flips in memory and caches is important
and largely effective

Increasing scale and constrained power may push toward
exposing silent hardware errors (of possibly unexpected kinds) –
corrupting an unaware application’s results

A primary concern is silent data corruption (SDC), where the
computation appears normal except for wrong numerical values

Undetected memory errors at exascale (1018 Flops) for one type
of error-correcting (ECC) memory could be ∼1 per day

Low-voltage processors and accelerators will likely have increased
rates of arithmetic errors; ECC doesn’t protect data
transformation
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Building blocks can enable silent-error-tolerant
solvers

Mitigate silent data corruption when performing linear algebra
operations in PDE solvers

Correcting bit flips in data when loaded from memory, just
before use

May enable more efficient but “lossy” architecture co-design
options

Figures adapted from M. Salloum et al., Proc. 6th FTXS Workshop, doi:10.1145/2909428.2909433. c© 2016 ACM.
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Better design of digital systems can improve
engineering

In a traditional mathematical view, a digital system is an
idealized logical machine

Still much room for design flaws to hide in complexity

Formal methods can help address this problem

In a systems engineering view, a digital system is a design
abstraction used for flexibly relating one physical system
(computing device) with another (outside world)

This introduces the additional complications of cyber-physical
systems and out-of-nominal behavior

Extending formal methods, including via complex systems
theory, can address these broader concerns

National security applications can benefit from stronger analytic
understanding of digital system behavior
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