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uncertainties like other physical systems — it's amazing how often
we can ignore this but how difficult things get when we can't

@

Robust Digital

Computation

in the Physical
World

Challenges of
Relying on Digital
Systems

Mayo

3/27



Begin at the beginning (A

Robust Digital

. .. Computation

m What is a digital system? in the Physical
World

m Working definition:
A physical system designed to have discrete combinatorial states Chalenges of
and to perform information processing Relying on Digita

Systems
m physical system: ultimately subject to contingencies and
uncertainties like other physical systems — it's amazing how often
we can ignore this but how difficult things get when we can't

m discrete: typically Boolean, the states are “attractors” for the
underlying continuous physics (e.g., 0 and 5 volts) and make
digital systems deterministic and lossless in many cases

Mayo

3/27



Begin at the beginning (A

Robust Digital
Computation

m What is a digital system? in the Physical
World

m Working definition:
A physical system designed to have discrete combinatorial states Chalenges of
and to perform information processing Relying on Digita

Systems
m physical system: ultimately subject to contingencies and
uncertainties like other physical systems — it's amazing how often
we can ignore this but how difficult things get when we can't

m discrete: typically Boolean, the states are “attractors” for the
underlying continuous physics (e.g., 0 and 5 volts) and make
digital systems deterministic and lossless in many cases

m combinatorial: a large number of elements can change
independently, creating vast combinations to store information
(N bits give 2" states)

Mayo

3/27



Begin at the beginning

m What is a digital system?

m Working definition:
A physical system designed to have discrete combinatorial states
and to perform information processing

physical system: ultimately subject to contingencies and
uncertainties like other physical systems — it's amazing how often
we can ignore this but how difficult things get when we can't

discrete: typically Boolean, the states are “attractors” for the
underlying continuous physics (e.g., 0 and 5 volts) and make
digital systems deterministic and lossless in many cases

combinatorial: a large number of elements can change
independently, creating vast combinations to store information
(N bits give 2" states)

information processing: transforming discrete inputs into discrete
outputs using logic operations
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Systems engineering raises the stakes

m Sandia missions use digital systems to control and simulate
high-consequence physical systems

m Digital hardware and software are coupled with these other
systems, forming high-consequence cyber-physical systems
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Weapon controllers Networked infrastructure Extreme-scale simulation
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Mathematics shows the limits of understanding
logic (:]

Robust Digital
Computation

m Theorem (Turing 1936, Rice 1953): No algorithm exists to in the Physical
predict a priori the behavior of a generic information processing Werld
system

Challenges of
m i.e., such a system is undecidable even if deterministic MIBED PIEE]

Systems
m Practical significance: A real system, with a finite exponentially
large number of states but otherwise generic, is effectively
undecidable — in particular, testing cannot tell us all its possible
behaviors

m We need to bound all possible behaviors to quantify safety and
security
m Further complication: Digital systems are also physical

m We have to deal with “rare events”
where logic isn't the whole story '
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What is the solution space? (A

Robust Digital
Computation

m Formal methods (reduced complexity) in the Physical
World
m Automated reasoning about all possible behaviors within a

model — widely used in industry T

. . Relying on Digital
m Model checking, theorem proving Systems

m Scaling limitations, though power and tractability have improved
over time

m Complex systems theory (structured complexity)
m Probabilistic analysis of response of networks to perturbations
m Well suited to understand emergent system-level robustness, but
only sparingly applied to engineered digital systems
m In both strategies, systems must be constrained to be analyzable

m ldeal approach is to consciously design-in analyzability and
robustness along with functionality Mayo
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Careful consideration is needed to verify digital
computations interacting with continuous physics

m In many applications, real numbers are not only represented
digitally but are also present as actual continuous dynamics
coupled via transducers — forming a hybrid or cyber-physical
system

m Most existing formal methods apply to purely digital systems

m Formally modeling and analyzing hybrid systems is an important
challenge

m Need to ensure models are physically consistent and well-posed

m Need to reason flexibly about continuous and discrete state
spaces

m Here we discuss a theorem-proving approach that captures key
aspects needed for more powerful reasoning about hybrid systems
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Buridan's Principle constrains analog-digital
interaction

m All known physical processes have continuous dependence on
initial conditions

m The same should hold for any physical implementation of digital
logic
m Thus a continuous input at time t; cannot be guaranteed to
result in a discrete decision at any finite later time ¢;

m By the intermediate value theorem, there is some (perhaps
unlikely) range of states at t; that leaves the system still
undecided at t; — e.g., partway between digital 0 and 1

m This is Buridan’s Principle (Lamport 1984)

m The presence of random noise does not change the argument —
there is still a finite probability to remain in an intermediate state
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An idealized hybrid system illustrates modeling
Issues

m Consider a thermostat designed to maintain an object's
temperature T in a desired range above ambient temperature

m Gain from “instantaneous” heat pulse: applied at uniform time
intervals if T is below a threshold

m Loss to environment: linear cooling law

m Buridan’s Principle says no device can guarantee that either a
full heat pulse or none is applied at a specific time

m This example can tolerate indecision because, when either a full
heat pulse or none is acceptable, an intermediate amount is also
acceptable
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An idealized hybrid system illustrates modeling @
Issues

Tt Robust Digital
. . . C tati
m Mathematical description ini’,?;";@;fill

consists of temperature Wit
T:R>o — R, “arbiter”
0: R — R, and
parameters

a,H, T,,e € Ryg

Limits of
Digitized Models
in an Analog

World

m Arbiter approximates unit
step function: bounded
between 0 and 1, with
6(A) =1 for A > ¢, and ;
6(A) =0 for A < —¢ o2 s 48

m For n € N, given T(n) as the temperature just before a potential
heat pulse at time n, the temperature evolves causally as

T(t) = (T(n) +HO(T. = T(n)) e forall e € (nn+1]
10/27



Bounds on temperature can be proved informally (A
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m Seek a guarantee on thermostat performance: maintaining the World
temperature in a range [A, Bl with 0 < A< B < 00

If T(0) € [A, B], then T(t) € [A,B] forall t € R

Limits of
Digitized Models

m This will follow by induction if the following holds for all n € N in an Analog

World

If T(n) € [A,B], then T(t) € [A, B] forall t e (n,n+1]

= Given the constraints on the arbiter #, we can show the property
holds provided
H
e*—1

O<A§min< ,(T*e)ea) and B> T,+e+ H
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Buridan's Principle is reflected in the formal
analysis

Coq definition of §

Parameter eps : R.

Parameter theta_tilde : R — R.

Hypothesis theta_tilde_bound : V d, 0 < theta_tilde d < 1.
Hypothesis theta_tilde_1 : ¥V d, d > eps — theta_tilde d = 1.
Hypothesis theta_tilde_0 : V d, d < -eps — theta_tilde d = 0.

m Coq proof assistant lets us mix definitions using axiomatic real
numbers with our inductive formulation of the discrete system

m Notice that hypotheses theta_tilde_0 and theta_tilde_1 involve
decisions on comparisons of real numbers

m Even though the comparison is computationally undecidable, it
is nonetheless easily provable via axioms
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Bounds on temperature can be proved in Coq

Formal proof: Temperature is bounded

Given our definitions — temperature computation and continuous
physical environment, we can show that our system will keep the
temperature within some (continuous) bounds

Theorem T_in_interval (Tn tau : R) (tau_bnd : 0 < tau < 1) :
A< Tn< B — A<T Tn tau tau_bnd < B.

Proof.
intros HAB. decompose record HAB. split.

destruct (RIt_le_dec Tn (Tstar - eps)).

apply Tn-heat_keeps_above; auto.
apply Tn_no_heat_keeps_above; auto.

destruct (Rle_lt_dec Tn (Tstar + eps)).

Qed.

apply Tn-heat_keeps_below; auto.
apply Tn-no-heat_keeps_below; auto.
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Systems analysis can incorporate out-of-nominal
electrical behavior

m Research is extending digital systems analysis to address physical

environments where a device is not fully digital anymore

m Mixed-signal simulation can elucidate the digital imprint (e.g.,

bit flip pattern) of a physical insult (e.g., radiation) on a circuit

m Using analog electrical model for the part of the circuit subjected

to the insult

m By including digital upsets in a formal or complexity model,
effect on rest of the digital state space can be quantified and

mitigated

m Example: Does a digital safety property still hold even in an
accident scenario?

Digital design

A

nalog model

Formal model
Mixed-signal simulation

@

Robust Digital

Computation

in the Physical
World

Modeling and
Verifying
Out-of-Nominal
Logic

Mayo

1427



Broader principles support robustness in @
complex systems

Robust Digital
Computation
in the Physical

World
m Biological and social complex systems typically are not formally
verified, but show impressive robustness to unforeseen failures
m Why? They have inherent stability constraints from their origins
in adaptation and selection
Modeling and
Verifying
Out-of-Nominal
m Our hypothesis: Digital designs constrained by formal methods Logic
also exhibit enhanced robustness to unforeseen failures by a
similar mechanism
Mayo
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Outsize benefits of up-front formal modeling have @
been noted in practice

Robust Digital
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in the Physical
World

m Key observation: Design for analysis yields increased robustness,
regardless of when or even whether the analysis is performed

m Faults and vulnerabilities are reduced if the developer starts with
a high-level formal model — even if no further verification is done
and even if the implementation is not explicitly constrained
(Woodcock et al. 2009)

Modeling and
. . . Verifying
m This supports our hypothesis that robustness is conferred Sl Al
because of design characteristics promoted by the formal o
modeling process
m By contrast, formal verification after the fact does not increase
robustness more broadly, if the design was not formally informed
Mayo
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Complex adaptive dynamical systems offer a useful
perspective on hardware and software

m As dynamical systems, today's typical digital designs are chaotic

m Formal methods, by contrast, enforce bounded behavior, similar
to that seen in complex systems adapted to their environments

m To be useful (engineering) or viable (evolution), an adaptive
dynamical system must show a coherent response, neither
strongly overdamped /inert nor profoundly chaotic/random

m At the “edge of chaos” (critical) or somewhat below it
(subcritical), broad robustness to perturbations is obtained

m Subcriticality or “smoothness” generalizes the constraints
imposed by formal analyzability

m Restricted programming models also extend the power of testing

m New programming models with intrinsic smoothness could enable
more confident generalization of correctness to untested inputs

m Empirically, incidence of vulnerabilities does differ measurably
based on programming language
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Boolean networks provide a simple representation @
of digital logic

Robust Digital
Computation

m Originally investigated in biology, Boolean networks (BNs) in the Physical
correspond closely to hardware sequential logic gates Weorld
m Each node in the directed graph has two possible states, 0 and 1

m A node's state transition at each discrete time step is
determined from its input connections by a “transfer function”

m Create BNs that add two 1-bit numbers (half-adder function),

by random sampling and selection Modeling and
Verifying

m This function is very simple, but we seek BNs representative of o Homine!
more complex implementations

m BN ensembles differ in average inputs per node (k)

m Select 20-node BNs that compute the correct result for all inputs
when operating nominally, and then introduce 1% bit errors to
evaluate robustness

m Cascading errors are outlined in red B2
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Boolean network “programs” exhibit quiescence for

k < 2 and chaos for k > 2

k=15

A Inputs Step 20

Outputs
(Average incorrect bits: 0.10)
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(Average incorrect bits: 0.73)

Figure from J. R. Mayo et al., Proc. 9th IEEE Systems Conference, doi:10.1109/SYSCON.2015.7116737. (© 2015 IEEE.
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Formal verification confirms insights from
dynamical systems theory

m While BN stability is relevant well beyond the reach of
exhaustive verification, the example half-adder BNs are simple
enough to check directly with formal methods

m With the NuSMV model checker, we exhaustively prove/disprove
correct function of these two BNs in the presence of bit errors

m Using a nondeterministic model that allows any single bit error
during a range of time steps

m Example correctness requirement for carry bit:
LTLSPEC F ((clock=20) & (n18 = (n00&n01)))

m NuSMV results: Chaotic BN is susceptible to corruption from
any time step, whereas quiescent BN can be corrupted only in
the last 5 of 20 time steps and is self-healing otherwise
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Failure modes can be understood via abstractions @

Robust Digital
m Examples of failures that result in an overapproximation: CampuEieg
in the Physical

. . _— World
m A logic gate becomes unreliable and nondeterministic '

m A sensor fails, providing random input to a digital control

m Generally: any malfunction that generates additional
behaviors that were not part of the design intent

m Errors induced by environmental physics are common:

m Radiation (cosmic rays, etc.) g%}z:g::a\
m Heating (fire, etc.) oEe
m Physical insult (destruction of sensor, etc.)
m Abstraction techniques can reveal failure modes for which a
particular design will be robust
m Abstraction techniques can support designed-for failure modes Maye

anticipating likely accidents and faults
nticipating likely idents an u 21/27



Square diagram shows refinement relationships that @
preserve requirements

Out-Of-Nominal Nominal Robust Digital
Computation
in the Physical
. Fail-Safe Nominal World
Requirements Requirements - Requirements
Refinement Abstract G Nominal
Failure Modes Refinement

Modeling and
Verifying
Out-of-Nominal
Logic

Failure Failure Failure
Mode 3 Mode 2 Mode 1

Figure from J. R. Mayo et al., Proc. 4th FTSCS Workshop, CCIS 596, doi:10.1007/978-3-319-29510-7.10. (© 2016 Springer.

m Refinement/abstraction conceptual diagram for treating

out-of-nominal and nominal models in a unified way "
ayo

m Arrows point in the direction of abstraction 22/27



Existing abstractions reveal in what ways a system
is robust

m If abstractions used in proving safety properties for the nominal
design (e.g., via CEGAR) can be reinterpreted as a manifestation
of faults, then this:

m Gives the digital designer an idea of what out-of-nominal
conditions the system is robust to — for free

m Suggests that the design can be intentionally engineered to
preserve critical safety properties for anticipated failure modes
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A supercomputer is itself a complex system with @
out-of-nominal behavior

Robust Digital

m High-performance computing (HPC) faces a resilience problem Computation
in the Physical
m Sheer scale (hundreds of thousands of processors) magnifies Wl
previously negligible hardware errors even for a correct program
in a nominal environment
m Physics simulation (main HPC application) is a highly
non-generic program; we can take advantage of its structure and
smoothness
m Numerical analysis already addresses stability to truncation errors
m |dea: Extend the mapping between the digital computation and
the physics being simulated, so that the computation gains e =
similar inherent stability to faults Eis

m An instance of algorithm-based fault tolerance

m Analogy between extreme-scale HPC and small-scale
remote/portable embedded computing: Both are typically Mayo
power-constrained 24/27



Problem: Future HPC platforms will face tradeoffs
imperiling correct hardware function

m Hardware correction already attempts to hide many
“out-of-nominal” behaviors from the application

m Error correction for bit flips in memory and caches is important
and largely effective

m Increasing scale and constrained power may push toward
exposing silent hardware errors (of possibly unexpected kinds) —
corrupting an unaware application’s results

m A primary concern is silent data corruption (SDC), where the
computation appears normal except for wrong numerical values

m Undetected memory errors at exascale (1018 Flops) for one type
of error-correcting (ECC) memory could be ~1 per day

m Low-voltage processors and accelerators will likely have increased
rates of arithmetic errors; ECC doesn't protect data
transformation
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Building blocks can enab
solvers

le silent-error-tolerant

m Mitigate silent data corruption when performing linear algebra

operations in PDE solvers

m Correcting bit flips in data
before use

m May enable more efficient
options

[ & Detected bit flips.
o
A

‘\/
4
f Interpolation
based on

neighboring
values

Large corruptions detected
as outliers and corrected

Figures adapted from M. Salloum et al., Proc. 6th FTXS Works|

when loaded from memory, just

but “lossy” architecture co-design

~100x
resilience

—e-Without any correction
~a-With corrections (robust)

Maximum tolerated error probability
per bit per standard iteration

107
10° 10

T 3

10? 10
Number of cores

Correction enables conjugate gradient to converge for
up to 100x higher rates of emulated memory bit flips

hop, doi:10.1145/2909428.2909433. (© 2016 ACM.
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Better design of digital systems can improve
engineering

® In a traditional mathematical view, a digital system is an
idealized logical machine

m Still much room for design flaws to hide in complexity

m Formal methods can help address this problem

m In a systems engineering view, a digital system is a design
abstraction used for flexibly relating one physical system
(computing device) with another (outside world)

m This introduces the additional complications of cyber-physical
systems and out-of-nominal behavior

m Extending formal methods, including via complex systems
theory, can address these broader concerns

m National security applications can benefit from stronger analytic
understanding of digital system behavior
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