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 While not a “Grand Unifying Theory” model of CPS systems, 
Extended Math Programming is a useful paradigm for 
modeling and analyzing CPS systems
 What do I mean by “Extended Math Programming”

 Math programming

 Analysis workflows

 Model transformations

 Extensions to Math Programming most relevant to CPS

 Generalized Disjunctive Programming (GDP)

 Dynamic systems (DAEs)

 Stochastic programming

 CPS Applications

 Power grid operations and modeling

 Computational approaches to Game Theory (for MTD)

Summary
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What is optimization?
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What is optimization?

 Finding the best answer!
 “What is the lowest spot on the earth?”

“-39,944 ft”

 Finding the inputs that give me the best 
answer!
 “Where is the lowest spot on the earth?”

“Challenger Deep, Mariana Trench”

 Finding the valid inputs that give me the 
best answer!
 “Where is the lowest dry spot on earth?”

“The Dead Sea shoreline  (-1391 ft)”
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 Wandering around in the real world, looking for the lowest spot is 
expensive, time-consuming, and error-prone

 We would rather work with a model of the real world

 Represent what we know about the problem in a usable form

 Incorporate assumptions and simplifications

 Be both tractable and valid

 (although these are often contradictory goals)

 Mathematical Programming is a convenient modeling paradigm:

 Supports data agnostic modelling

Constrained Optimization Models
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The universe of “math programming”
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If 𝒇 𝒙 , 𝒈 𝒂, 𝒙 , 𝒉(𝒂, 𝒙) are…

Linear Nonlinear

Continuous LP
[linear programming]

NLP
[nonlinear programming]

Discrete IP
[integer programming]

Continuous + 
Discrete

MIP
[mixed integer (linear)
programming]

MINLP
[mixed integer nonlinear 
programming]

If
 𝒙
is
…

Operations Research

Physical systems

- dynamic systems

- process models

- uncertainty quantification

Systems design

Discrete operations

Cyber-physical systems



 The MP “toolbox”
 +, −, ×, ÷

 sin, cos, tan, etc.

 𝑦𝑥, 𝑒𝑥, log10 𝑥 , ln(𝑥)

 (functions  in 𝐶2)

What’s the problem with Math Programming?

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010
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The previous slide is a real model…

 (In the US) Sequential markets (run by ISO/RTO):

 “Unit commitment” (UC) / “Day-ahead Market” (DAM)

 MIP run ~10 hours before the start of a day

 Sets on/off state for all generator units hourly for 24 hours

 “Reliability Unit Commitment” (RUC)

 MIP run ~8 hours before the start of the day

 Commits additional generators to meet spinning reserve and reliability 
(N-1 robustness) requirements

 “Economic Dispatch” (ED) / “Security-constrained ED” (SCED)

 “Real-time” markets: LP run hourly / every 5 minutes 

 Set generation levels, prices to meet realized demand

 Can switching lines on/off improve resilience / reduce cost?

 Problem scale
 100’s – 1000’s of buses;  2-3x lines

Siirola and Laird 17



The Challenge:  MP is dense and subtle

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010

Siirola and Laird 18



The Challenge:  MP is dense and subtle

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010

To a first approximation:

- DCOPF

- Economic dispatch

- Unit commitment

- Transmission switching

- N-1 contingency

Siirola and Laird
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Sidebar: What do these have in common?

𝑎 = 𝑏 + 𝑐
𝑏 ≤ 𝑀 ⋅ 𝑦

𝑐 ≤ 𝑀 1 − 𝑦
𝑥 − 3 = 𝑐 − 𝑏

𝑏 ≥ 0
𝑐 ≥ 0

𝑦 ∈ 0,1

𝑎 = (𝑥 − 3)2+𝜖

𝑎 =
2(𝑥 − 3)

1 + 𝑒−
𝑥−3
ℎ

− 𝑥 + 3

𝑎 ≥ 𝑥 − 3
𝑎 ≥ 3 − 𝑥

𝑎 = 𝑏 + 𝑐
𝑥 − 3 = 𝑐 − 𝑏
𝑏 ≥ 0 ⊥ 𝑐 ≥ 0

20Siirola and Laird
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𝑎 = 𝑏 + 𝑐
𝑥 − 3 = 𝑐 − 𝑏
𝑏 ≥ 0 ⊥ 𝑐 ≥ 0

𝑎 = 𝑎𝑏𝑠(𝑥 − 3)

If we mean “𝑎 = 𝑎𝑏𝑠(𝑥 − 3)”, 
why don’t we write that in our models???

21Siirola and Laird



A new solution workflow

 Model Transformations: Projecting problems to problems
 Project from one problem space to another

 Standardize common reformulations or approximations

 Enables “Extended Math Programming”[1]

 Develop new modeling constructs not supported by solvers

 (Automatically) Convert these “unoptimizable” modeling constructs into 
equivalent optimizable forms

+Model Data Compile Problem

Solve

Transform

22Siirola and Laird

[1] - Ferris, et al. “An extended mathematical programming framework”.

Computers & Chemical Engineering 33(12) 2009.



 Ferris, et al. (2009)
 Modeling framework (domain-specific language) built on GAMS

 Adds support for “higher level” constructs

 Complementarity conditions, Variational inequalities, Bilevel problems, 
Disjunctive programming

 Constructs are annotated through a separate input file

 Interfaces to specialized solvers or provides automated reformulations 
for standard solvers

 Alternatively, EMP concepts could be implemented through 
an object-oriented framework

Extended Math Programming
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Pyomo: optimization modeling in Python

24Siirola and Laird

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling 

Objects NEOS

Couenne

Meta-Solvers
• Generalized Benders

• Progressive Hedging

• Linear bilevel

• Linear MPEC

Modeling Extensions
• Disjunctive programming

• Stochastic programming

• Bilevel programming

• Differential equations

• Equilibrium constraints

Core Optimization 

Objects

Model 

Transformations

DAKOTA



Extended Math Programming for CPS

 Key (CPS) modeling needs
 Modularity and composability

 Continuous and discrete 
(logic-based) models

 Continuous dynamics 
(physical systems)

 Stochastic models / 
uncertainty quantification

 EMP capabilities
 Hierarchical model definitions

 Complementarity conditions

 Generalized Disjunctive 
Programming (GDP)

 (Discretized) systems of 
differential-algebraic 
equations (DAE)

 Stochastic programming / 
design under uncertainty

25Siirola and Laird



Block-oriented modeling

 “Blocks”
 Collections of model components

 Variable, Parameter, Set, Constraint, etc.

 Blocks may be arbitrarily nested

 Why blocks?
 Support reusable modeling components

 Express distinctly modeled concepts as distinct objects

 Manipulate modeled components as distinct entities

 Explicitly expose model structure (e.g., for decomposition)

 Enables transformations and component namespaces

 Prior art
 Ubiquitous in the simulation community

 Rare in Math Programming environments

 Notable exceptions: ASCEND, JModelica.org

Siirola and Laird 26



 Capture connected block structure, e.g., network flow

 Blocks interface through connectors (group of variables)

 Block implementation independent of network definition

Domain Node Arc Connector Vars

Fluid flow Mass balance Pressure Drop Pressure;

Volumetric flow

AC Power flow KCL Active power transfer;

Reactive power transfer

Phase angle;

Active power flow;

Reactive power flow

Structured modeling with blocks

Node

Arc

Node

Node Node

Node

Node
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Generalized disjunctive programming

 Disjunctions: selectively enforce sets of constraints
 Sequencing decisions: x ends before y or y ends before x

 Switching decisions: a process unit is built or not

 Alternative selection: selecting from a set of pricing policies

 Implementation: leverage Pyomo “blocks”
 Disjunct: 

 Block of Pyomo components 

– (Variable, Parameter, Constraint, etc.)

 Boolean (binary) indicator variable determines 
if block is enforced

 Disjunction:

 Enforces logical OR/XOR across a set of Disjunct indicator variables

 Logic constraints on indicator variables
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Simple Example: Task sequencing in Pyomo

def _NoCollision(model, disjunct, i, k, j, ik):

lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)

rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)

if ik:

disjunct.c = Constraint( expr= lhs + model.tau[i,j] <= rhs )

else:

disjunct.c = Constraint( expr= rhs + model.tau[k,j] <= lhs )

model.NoCollision = Disjunct( model.L, [0,1], rule=_NoCollision )

def _setSequence(model, i, k, j):

return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ]

model.setSequence = Disjunction(model.L, rule=_setSequence)
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Solving disjunctive models

 Few solvers “understand” disjunctive models
 Transform model into standard math program

 Big-M relaxation:

 Convert logic variables to binary

 Split equality constraints in disjuncts into pairs of inequality constraints

 Relax all constraints in the disjuncts with “appropriate” M values

– Automatically calculate M values for linear expressions

 Convex hull relaxation (Balas, 1985; Lee and Grossmann, 2000)

 Disaggregate variables in all disjuncts

 Bound disaggregated variables with Big-M terms

pyomo solve --solver=cbc --transform=gdp.bigm jobshop.py jobshop.dat

pyomo solve --solver=cbc --transform=gdp.chull jobshop.py jobshop.dat

31Siirola and Laird



model = ConcreteModel()

# […]

TransformFactory(“abs.complements”).apply_to(model)

TransformFactory(“mpec.disjunctive”).apply_to(model)

TransformFactory(“gdp.bigm”).apply_to(model)

 Chaining transformations

A transformation-centric view of abs()

32Siirola and Laird
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 Optimization of dynamic systems is hard.
 In OR, think “multi-stage” problems

 In “engineered systems”, think differential equations

 High fidelity simulation is difficult  and expensive (e.g., HPC)

 How to optimize?

– Simulation-based optimization (single shooting)

– Multiple shooting methods

– Discretization (collocation methods)

 Common theme: significant effort to rework formulation

– Time: first ~6 months of a grad student’s research

– Error prone: many ways to make subtle mistakes

– Inflexible: formulation specific to selected solution approach

Extensions to dynamic systems

33Siirola and Laird



 Model dynamical systems in a natural form
 Systems of Differential Algebraic Equations (DAE)

 Extend the Pyomo component model

 ContinuousSet:  A virtual set over which you can take a derivative

 DerivativeVar:  The derivative of a Var with respect to a ContinuousSet

Dynamic systems through EMP
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 We see increasing demand for optimization under uncertainty
 Recognition that decisions must explicitly incorporate risk

 Many approaches: surrogates, sampling, robust optimization

 We focus on stochastic programming

 Capture problem uncertainty as a set of possible scenarios

 Solve to select a single answer that optimizes across all scenarios

 Naturally leverages a transformation-based approach

Optimization under uncertainty

35
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 Implement meta algotithms (via problem decomposition)!
 Stage-wise (e.g., Benders decomposition [Benders, 1962])

 Master problem (1st stage), independent (2nd stage) subproblems

 Master problem grows with cuts from subproblems

 Scenario-based (e.g., Progressive Hedging  [Rockafellar & Wets, 1991])

 “No” master problem

 Iteratively converge NAC by penalizing deviation from consensus

What if the problem is too difficult?

…
…

…

…

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

… … …

… … …

… … …

… … …

optimize

optimize

optimize

optimize

optimize

optimize

optimize

optimize

optimize

Progressive Hedging
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 Reliability Unit Commitment with Transmission Switching
 Enhance the resiliency of the electric transmission system by ensuring 

the system can survive the loss of any single asset (generator or non-
radial transmission line)

 Evaluate cyber-motivated game theoretic models
 Compute optimal defender strategies for notional adversarial models

Selected applications

38Siirola and Laird



Returning to RUC + Transmission Switching

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010

To a first approximation:

- DCOPF

- Economic dispatch

- Unit commitment

- Transmission switching

- N-1 contingency

Siirola and Laird 39



(Nonobvious) Inherent structure

contingencies

N-1 Economic Dispatch

nominal case

Unit Commitment

EDOPFSwitching Key feature: 

Layered (nested) 

model complexity

Siirola and Laird 40



This still doesn’t quite tell the whole story
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 Transmission switching:

 Generation

Explicitly expose disjunctive decisions
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Embed within a structured model

~~

~

~
Switchable Transmission LineNetwork Model

Bus model

Switchable Generator

Current Balance 
(KCL)

Transmission Line 
Power Flow Model

V

Start-Up
Model

)

Ramp Limits (

V Generation 
Model

V
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Optimal Solution of RTS-96

 From Hedman, et al. 2010
 N-1 UC solution: 3,245,997

 N-1 UC w/ Switching: 3,125,185  (2 pass UC+switching heuristic)

 Restructured problem (complete N-1 UC w/ switching):

 Solution (1e-4 gap): 2,990,004   (60,000 sec)

 Automated Big-M relaxation (including automatic M calculation)

 Default solver settings

Rows Columns Binaries

Raw model 21,232,224 13,129,692 3,796,830

After presolve 2,471,714 1,249,976 187,194 

Rows Columns Binaries

Raw model 5,118,760 1,501,177 5,184

After presolve 2,634,851 1,062,290 4,476
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 Capture high-level aspects of real system defense

 Simplest example: FlipIt, “stealthy takeover”
 Two players: attacker and defender

 One contested resource.  Defender holds at start

 A player can move at a cost

 Takes resource (tie to defender)

 Neither player ever knows who owns the resource

 Strategy: when to move?  Timeline is infinite.

 Utility = (time in control) – cost    (can be weighted)

 Many results in the original paper

Modeling Attacker-Defender Games

45

Marten van Dijk, Ari Juels, and Alina Oprea. FlipIt: The Game of 

“Stealthy Takeover”. Journal of Cryptology, 26(4):655–713, 2013. 
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 Analysis continuum

 Challenges:
 Analytical: optimal response over continuous (infinite) parameters

 May require restrictive / unrealistic assumptions (e.g., periodic moves)

 Simulation: enumerate (subset of) parameters and collect statistics
 Search by full enumeration frequently computationally intractable

 Opportunity:
 Leverage numerical optimization to gain prescriptive insights while 

preserving much of the flexibility of simulation

Exploring Alternatives to Simulation –vs– Analytical

46

Increasing Flexibility, Expressiveness Increasing Generality

Simulation Stochastic Programming Analytical
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 Key idea in stochastic programming: 
 approximate uncertainty by sampling outcomes

 Approximate attacker’s strategy space by sampling possible 
random success-time outcomes 
 Attack scenarios

 More scenarios gives a better approximation

 Optimize to determine the defender’s single best strategy 
against ALL scenarios
 Non-anticipative (only one solution for all attacks)

 Extensive form is a mixed-integer program (MIP)

 Can express more easily as a disjunctive program (DP)
 Convert DP to MIP

Stochastic Programming
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For each scenario s and time t, only 3 possible cases:

 Attacker takes over (defender doesn’t move)

 Defender takes over

 Nothing changes

 Where
 𝑎𝑠𝑡:   Attacker moves at time 𝑡 in attack scenario 𝑠

 𝑑𝑡:    Defender moves at time 𝑡

 𝜌𝑠𝑡 = ቊ
1 if defender controls resource at time 𝑡
0 if attacker controls resource at time 𝑡

Cases
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FlipIt Disjunctive Program
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 Pick a case for each scenario at each time
 The Pyomo modeling language lets you write it about this way
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Equivalent MIP
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 Pyomo can 
(automatically)  
translate to a 
model form like 
this
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Families of Best-Response Curves 
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 Even a modest time horizon (64) and number of scenarios (32) 
approximates infinite game

• Varying 

defender 

move cost 

and benefit 

of holding 

resource.

• Attacker 

Blue

• Defender 

Red
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 While not a “Grand Unifying Theory” model of CPS systems, 
Extended Math Programming is a useful paradigm for 
modeling and analyzing CPS systems
 What do I mean by “Extended Math Programming”

 Math programming

 Analysis workflows

 Model transformations

 Extensions to Math Programming most relevant to CPS

 Generalized Disjunctive Programming (GDP)

 Dynamic systems (DAEs)

 Stochastic programming

 Bilevel optimization

 CPS Applications

 Power grid operations and modeling

 Computational approaches to Game Theory (for MTD)

Summary
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 Extended Math Programming is a useful framework for 
consistently expressing CPS; however,
 The ability to express the problem does not guarantee a solution

 e.g., a minor extension to FlipIt yields a game (PLADD) that is resistant to 
direct solution by stochastic programming

 Problems can scale beyond abilities of current solvers

 LP: > 1e8;  MIP: > 1e7;  NLP: > 1e6;  MINLP > 1e3?

 But algorithms are advancing

– At least as fast as computing  [Amundson 1988, Bixby 2012]

– Decomposition, formulation engineering, specialized solvers

 The formalism, expressiveness, and rigor has pedagogical 
value.
 Could form the basis of a GUT for classroom settings

 Extensible to new CPS-specific modeling constructs

 Rich algorithm research space

EMP is not a panacea
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 For more information…

 Project homepages

 http://www.pyomo.org

 http://software.sandia.gov/pyomo

 User mailing lists

 pyomo-forum@googlegroups.com

 “The Book”
 Second Edition now available!

 Mathematical Programming Computation papers
 Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)

 PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

Thank you!
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