
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 1

Architectures for Unified Field Inversion with
Applications in Elliptic Curve Cryptography

Author1 & Author2

Abstract—We are presenting two new inversion algorithms

for binary extension and prime fields which are slightly mod-

ified versions of the Montgomery inverse algorithm. An

hardware architecture implementing these algorithms is also

introduced, in which the field elements are represented us-

ing a multi-word format. This feature allows a scalable and

unified architecture which operates in a broad range of pre-

cision, which has advantages in elliptic curve cryptography.

I. Introduction

The basic arithmetic operations (i.e. addition, multipli-
cation, and inversion) in prime and binary extension fields,
GF (p) and GF (2n), have several applications in cryptog-
raphy, such as decipherment operation of RSA algorithm
[1], Diffie-Hellman key exchange algorithm [2], the Govern-
ment Digital Signature Standard [3] and also elliptic curve
cryptography [4], [5]. Recently, speeding up inversion op-
eration in both fields has been gaining some attention since
inversion is the most time consuming operation in elliptic
curve cryptographic algorithms when affine coordinates are
selected [6], [7], [8], [9], [10].
In this paper, we will give and analyze multiplicative in-

version algorithms for GF (p) and GF (2n) which allow very
fast and area-efficient, unified and scalable hardware imple-
mentations. The algorithms are based on the Montgomery
inverse algorithms given in [6].

II. The Montgomery Inversion Algorithm

The following algorithm performs the Montgomery inver-
sion in GF (2n). However, the Phase II of the algorithm is
omitted since it is not relevant to this paper, and a similar
algorithm is in [9].
Algorithm A

Input: a(x) and p(x), where deg(a(x)) < deg(p(x))
Output: r(x) and k, where r = a(x)−1xk (mod p(x))
and deg(a(x)) ≤ k ≤ deg(p(x)) + deg(a(x)) + 1

1: u(x) := p(x), v(x) := a(x), r(x) := 0, and s(x) := 1
2: k := 0
3: while (v(x)! = 0)
4: if u(0) = 0 then u(x) := u(x)/x, s(x) := xs(x)
5: else if v(0) = 0 then v(x) := v(x)/x, r(x) := xr(x)
6: else if deg(u(x)) > deg(v(x)) then

u(x) := (u(x) + v(x))/x
r(x) := r(x) + s(x)
s(x) := xs(x)

7: else v(x) := (v(x) + u(x))/x

Authors are with the Department of Computer Science, Uni-
versity of California, Santa Barbara, CA 93106. E-mail:
{you,me}@cs.ucsb.edu
This work is supported by Motorola.

s(x) := s(x) + r(x)
r(x) := xr(x)

8: k := k + 1
9: if deg(r(x)) = deg(p(x)) then r(x) := r(x) + p(x)
10: return r(x) and k

The following properties are observed:
• If deg(p(x)) > deg(a(x)) > 0, then the degrees of inter-
mediate binary polynomials r(x), s(x), u(x), and v(x) in
the Montgomery inverse algorithm are always in the range
[0, deg(p(x))].
• If p(x) is an irreducible polynomial, and deg(p(x)) >
deg(a(x)) > 0, then n+ 1 < k ≤ deg(a(x)) + n+ 1.
• If p(x) is an irreducible polynomial, and deg(p(x)) >
deg(a(x)) > 0, then Phase I of Montgomery inverse algo-
rithm for GF (2n) returns a(x)−1xk (mod p(x)).
Additions and subtractions in the original algorithm are

replaced with additions without carry in GF (2n) version
of the algorithm. Since it is possible to perform addition
(and subtraction) with carry and addition without carry
in a single arithmetic unit, this difference does not cause
a change in the control unit of a possible unified hard-
ware implementation. On the other hand, the algorithm
for GF (2n) differentiates from the original algorithm in
Step 6, in which the degrees of u(x) and v(x) are com-
pared. In order to have a unified architecture, we propose
a slight modification in the original algorithm for GF (p)
which is given in the following section.

III. A Variation of Montgomery Inversion

Algorithm

We propose to modify Step 6 of the algorithm given in [6]
in a such way that instead of comparing u and v, number of
bits needed to represent them are compared. The proposed
modifications can be seen in Step 6 and Step 7.a of the
modified algorithm given below:

Algorithm B

Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1] and k, where r = a−12k (mod p)
and n ≤ k ≤ 2n

1: u := p, v := a, r := 0, and s := 1
2: k := 0
3: while (v > 0)
4: if u is even then u := u/2, s := 2s
5: else if v is even then v := v/2, r := 2r
6: else if bitsize(u) > bitsize(v) then

u := (u− v)/2, r := r + s, s := 2s
7: else then

v := (v − u)/2, s := s+ r, r := 2r

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 2

7.a: if v < 0 then v := −v, s := −s
8: k := k + 1
9: if r < 0 then
9.a: if r ≤ −p then r := r + p
9.b: return r := −r
10: else
10.a: if r ≥ p then r := r − p
10.b: return r := p− r and k

When corrections in Step 7.a are executed, the effect is
multiplying both sides of the invariant by −1. Therefore,
new invariant when s < 0 is given as −p = us+ vr. While
u and v remain to be positive integers, s and r might be
positive or negative. Therefore, we need to alter the fi-
nal reduction steps to bring r in the correct range, which
is [0, p). The range of s and r are [−p, p] and [−2p, 2p],
respectively. As a result we need to use one more bit to
represent s and r than in the original algorithm. The ad-
vantage of this version of the algorithm will be discussed
in the next section.

IV. Hardware Architecture

Scalability of the arithmetic modules is important in
cryptographic context since it allows to increase the key
length when the need for more security arises without hav-
ing to modify or re-design the cryptographic unit. The
scalability of the inverter unit can easily be achieved by
using shifter and adder units which handle only certain
number of bits of the operands at a time. One addition (or
shift) operation, therefore, in the corresponding field takes
more than one clock cycle. The number of bits that the
unit operate on is referred as word and its length can be
determined or adjusted with respect to given area, speed
or latency requirements.
The algorithms B and C can be implemented in a

unified hardware architecture provided that a dual-field
adder/subtractor (DFA/S) that operates in both fields is
available. In order for the inverter unit to be scalable,
The DFA/S is designed to handle words of finite num-
ber of bits at a clock cycle, therefore we call them word
DFA/s(WDFA/S).
Except the final correctional steps (steps 9 through 11),

the main loops of the Algorithm A and Algorithm B can
be implemented in the same hardware unit. The only dif-
ference in the main loops of the two algorithms is that the
Algorithm B has the extra Step 7.a. However, this extra
step neither necessitates a major change in the circuitry
nor introduces any extra clock cycle in the computation.
Algorithm B replaces integer comparison operation of the
original algorithm with just one bitsize comparison. In ex-
change for that, some of the intermediate variables take
negative integer values. For example, the variables v and s
may have to change sign in Step 7.a if the subtraction op-
eration in Step 7 produce a negative result. Taking two’s
complement of these two variables may re-introduce the
clock cycles we saved by eliminating integer comparison
operation in Step 6 of the original algorithm [6]. On the
other hand, When variable v turns out to be a negative
number as a result of the subtraction in Step 7, we may

keep it as negative in two’s complement representation. In
the next iteration in the loop, it can easily be seen that
Step 5 or Step 6 is executed. Sign change of the variable
may be performed at the same time as the subtraction op-
eration in the subsequent Step 6.
On the other hand, the magnitutes of r and s cannot eas-

ily be determined. Therefore, we need to devise a method
in order to avoid taking two’s complement of s in Step 7.a.
We propose to maintain one extra bit for each of the vari-
ables s and r which holds extra sign information for them.
We call this extra sign bit as correct sign (CS) of the vari-
able. These variables can be kept as negative (in two’s
complement representation) or positive, however, their real
sign is determined by the value in correct sign bit. If their
actual sign is different from the one in the correct sign bit,
the sign must be flipped. On the other hand, taking two’s
complement when this happens is not desirable since we
want to avoid the extra clock cycles it introduces. The ac-
tual and correct signs of a variable determine the way we
execute the addition operation x := r+ s in Steps 6 and 7.
Assuming that Sx and CSx are the actual and correct sign
of the variable x respectively, this operation is performed
as in the following:

Algorithm C

Input: r, s, Sr, Ss, CSr, and CSs

Output: x := r + s, Sx, and CSs

1: if Sr = CSr and Ss = CSs then
1.a: x := s+ r and CSx := Sx

2: else if Sr = CSr and Ss = ¯CSs then
2.a: x := r − s and CSx := Sx

3: else if Sr = ¯CSr and Ss = CSs then
3.a: x := s− r and CSx := Sx

4: else Sr = ¯CSr and Ss = ¯CSs then
4.a: x := s+ r and CSx := S̄x

V. Complexity Analysis of the Unified Inverter

Assuming that we have two WDFA/S in our design, the
total computation time of inversion in terms of total clock
cycle count can be computed using the formula T = k ·(e+
1), where k is the iteration index in the main loop of the
algorithms, e = ⌈n+1

w
⌉ is the number of words and w is the

word length.
Based on these experimental values we calculated the es-

timated execution time in terms of number of clock cycles
for inversion operation using word length 32. We sum-
marized the results in Table 1. Table 1 also includes the
clock cycle count estimates for the modular multiplication
operation for the same precisions, which is assumed to be
performed using unified and scalar Montgomery modular
multiplication unit proposed in [11] with 7 pipeline stages
and 32-bit word size. The ratio of inversion time to multi-
plication time, which is important in the decision whether
affine or projective coordinates are to be employed in el-
liptic curve cryptography, is also included in the table. It
is argued in [12] that for binary extention fields GF (2k)
projective coordinates, which does not entail fast execu-
tion of inversion operation, perform better than the affine

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 3

coordinates when inversion operation is more than 7 times
slower than the multiplication operation. Similarly, our
calculations show that this ratio is about 9 for prime field
GF (p). As can be observed in Table 1 the ratio stays lower
than 7 for the precisions of interest to the elliptic curve
cryptography.

Table 1: Estimated clock cycles for inversion and the
ratio to the multiplication operation.

bitsize Inversion Multiplication Ratio
160 1368 327 4.18
192 1911 398 5.00
224 2544 469 5.42
256 3276 526 6.23

In Figure 1 and Figure 2, hardware realizations of the
operations (u− v)/2 and r + s are shown, respectively. In
Figure 1, the building block A simply seperates the least
significant bit from the rest of the result bits, which are
to be kept in the latch one clock cycle in order to perform
shift operation. In the next clock these bits are combined
with the least significant bit of the current result, which
is placed in the most significant position of the final re-
sulting word, in block B. The block C of the Figure 1, is
used to connect the register outputs to the correct input
of the adder/subtractor unit. The circuit in Figure 2 per-
forms two operations: r + s and 2r(or 2s). The register
content, which is to be shifted left by one bit, is avail-
able at the output of block D. The block D is also used
to connect the register outputs to the correct input of the
adder/subtractor unit. Blocks A and B are used to shift
a word in each clock cycle. Block C directs the results of
the two operation (r+ s and 2r(or 2s)) to the appropriate
registers.

Figure 1: Hardware realization of (u− v)/2.

 ADDER/

SUBTRACTOR

u-reg

v-reg

 Local

Control

Latch

Cin

[n-1:0]

[n-1:1]

[0:0]

A

B

C

Figure 2: Hardware realization of r + s.

 ADDER/

SUBTRACTOR

r-reg

 Local

ControlLatch

[n-1:n-1]

A

B

CD

Cin

[n-2 : 0]

s-reg

References

[1] J.-J. Quisquater and C. Couvreur, “Fast decipherment algorithm
for RSA public-key cryptosystem,” Electronics Letters, vol. 18,
no. 21, pp. 905–907, Oct. 1982.

[2] W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, vol. 22, pp. 644–654,
Nov. 1976.

[3] National Institute for Standards and Technology, “Digital sig-
nature standard (DSS),” Federal Register, vol. 56, pp. 169, Aug.
1991.

[4] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, Jan. 1987.

[5] A. J. Menezes, Elliptic Curve Public Key Cryptosystems,
Kluwer Academic Publishers, Boston, MA, 1993.

[6] B. S. Kaliski Jr., “The Montgomery inverse and its applications,”
IEEE Transactions on Computers, vol. 44, no. 8, pp. 1064–1065,
Aug. 1995.

[7] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck,
“Fast key exchange with elliptic curve systems,” in Advances
in Cryptology — CRYPTO 95, D. Coppersmith, Ed. 1995, Lec-
ture Notes in Computer Science, No. 973, pp. 43–56, Springer,
Berlin, Germany.

[8] T. Kobayashi and H. Morita, “Fast modular inversion algo-
rithm to match any operand unit,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, vol. E82–A, no. 5, pp. 733–740, May 1999.

[9] E. Savaş and Ç. K. Koç, “The Montgomery modular inverse -
revisited,” IEEE Transactions on Computers, vol. 49, no. 7, pp.
763–766, July 2000.

[10] M. A. Hasan, “Efficient computation of multiplicative inverses
for cryptographic applications,” Technical Report CORR 2001–
03, Centre for Applied Cryptographic Research, University of
Waterloo, Canada, 2001.

[11] E. Savaş, A. F. Tenca, and Ç. K. Koç, “A scalable and unified
multiplier architecture for finite fields GF(p) and GF(2m),” in
Cryptographic Hardware and Embedded Systems - CHES 2000,
Ç. K. Koç and C. Paar, Eds. 2000, Lecture Notes in Computer
Science No. 1965, pp. 281–296, Springer, Berlin, Germany.

[12] J. López and R. Dahab, “Fast multiplication on elliptic curves
over GF(2m) without precomputation,” in Cryptographic Hard-
ware and Embedded Systems, Ç. K. Koç and C. Paar, Eds.
1999, Lecture Notes in Computer Science, No. 1717, pp. 316–
325, Springer, Berlin, Germany.

