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Field Axioms

A field F consists of a set S and two operations which we will call
addition and multiplication, and denote them by ⊕ and ⊗
The set S has two special elements, denoted by 0 and 1

The set S and the addition operation ⊕ forms an additive group
denoted by Ga = (S ,⊕) such that 0 is the neutral element of Ga

Also the set S∗ = S − {0} and the multiplication operation ⊗ forms a
multiplicative group denoted by Gm = (S∗,⊗) such that 1 is the unit
(identity) element of Gm

Furthermore, the distributivity of multiplication over addition holds:

a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c) for a, b, c ∈ S
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Size and Characteristic

The number of elements in a field is the size of the field, which can
be finite or infinite

The characteristic k of a field is the smallest number of times one
must use 1 (the identity element of Gm) in a sum (using the addition
operation ⊕) to obtain 0 (the identity element of Ga)

k 1s︷ ︸︸ ︷
1⊕ 1⊕ · · · ⊕ 1 = 0

The characteristic is equal to zero, if the repeated sum never reaches
the additive identity element 0
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Rings

The set of integers Z with the integer addition and multiplication
operation does not form a field

We can easily verify that (Z,+) is an additive group with identity 0

However, (Z − {0}, ·) is not a multiplicative group

For example, the element 2 ∈ Z − {0}, however, it does not have an
inverse: There is no such x ∈ Z − {0} that would give 2 · x = 1

In fact, (Z,+, ·) forms a ring

Ring is another mathematical structure similar to field, which does
not require a multiplicative group

In a ring, the distributivity of multiplication over addition holds
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Infinite Fields

A rational number is defined to be a number of the form a
b such that

b 6= 0 and a, b ∈ Z
The set of rational numbers Q together with the addition and
multiplication operations forms a field, such that the additive and
multiplicative identities are 0 and 1

Indeed, (Q,+) is an additive group with identity 0

The additive inverse of a
b is found as − a

b

Also, (Q, ·) is a multiplicative group with identity 1

The multiplicative inverse of a
b with with a 6= 0 is found as b

a

The size of the field Q is infinity

The characteristic of Q is zero since the sum 1 + 1 + · · ·+ 1 can be
equal to 0 if we take zero 1
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Infinite Fields

Similarly, the set of real numbers R together with the addition and
multiplication operations forms a field, such that the additive and
multiplicative identities are 0 and 1

Also, the set of complex numbers C together with the addition and
multiplication operations forms a field, such that the additive and
multiplicative identities are 0 and 1

Both of these fields have infinite size and zero characteristic

In cryptography, we deal with computable objects, and we have finite
memory, therefore, infinite fields are not suitable

In cryptography, we deal with finite fields, a branch of mathematics
where the name of Évariste Galois has a special place
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Évariste Galois

Évariste Galois (1811-1832) was a French mathematician

While still in his teens, he was able to determine a necessary and
sufficient condition for a polynomial to be solvable by radicals,
thereby solving a long-standing problem

His work laid the foundations for Galois theory and group theory, two
major branches of abstract algebra

He was the first person to use the word “group” (French: groupe) as
a technical term in mathematics to represent a group of permutations

A radical Republican during the monarchy of Louis Philippe in France,
he died from wounds suffered in a duel under questionable
circumstances at the age of twenty
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Finite Fields

For a prime p the set Zp together with the addition and
multiplication mod p operations forms a finite field of p elements

We denote this field by GF(p) or Fp

It is called a field of p elements or Galois field of p elements

The additive group (Zp,+) has the elements
Zp = {0, 1, 2, . . . , p − 1}, the operation is addition mod p, and the
additive identity element is 0

The multiplicative group (Z∗
p , ·) has the elements

Z∗
p = {1, 2, . . . , p − 1}, the operation is multiplication mod p, and

the multiplicative identity element is 1

The size of GF(p) is p, while the characteristic is also p since

p copies of 1︷ ︸︸ ︷
1 + 1 + 1 + · · ·+ 1 = 0
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The Smallest Field: GF(2)

Since 2 is a prime, GF(2) is a Galois field of 2 elements

The set is given as {0, 1}
The field size is 2, and the field characteristic is 2

The additive identity is 0 while the multiplicative identity is 1

The addition and multiplication operations are as follows:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

In other words, the addition operation in GF(2) is equivalent to the
Boolean exclusive OR operation, while the multiplication operation in
GF(2) is the Boolean AND operation
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GF(3)

3 is also a prime, and thus, GF(3) is a Galois field of 3 elements

The set is given as {0, 1, 2}
The field size is 3, and the field characteristic is 3

The additive identity is 0 while the multiplicative identity is 1
the additive group: ({0, 1, 2},+), the multiplicative group: ({1, 2}, ·)
The addition and multiplication operations in GF(3) are defined as
mod 3 addition and mod 3 multiplication, respectively:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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Finite Fields with Composite Number Size

Since the size p of GF(p) is a prime, a question one can pose is
whether there are fields of size other than a prime

For example, is there a field with 6 elements?

We can try to see if mod 6 arithmetic works, however, we already
know that multiplicative inverse of certain elements mod 6 do not
exist

For example, 3 does not have a multiplicative inverse in mod 6, since
there is no number a that satisfies

3 · a = a · 3 = 1 (mod 6)

However, there may be another way to construct a field of 6 elements
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Finite Fields of Size Prime Power

It turns out there is no way to construct a field of 6 elements

Galois showed that the size of a finite field can either be prime or
power of a prime: pk for k = 1, 2, 3, . . .

There is a particular construction of such fields

In fact, we already know how to construct GF(p), it is simply mod p
arithmetic over the set Zp

How does one construct GF(p2) or GF(p3)?

For example, what is the set and the arithmetic of GF(73)?
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Construction of GF(2k)

First we show how to construct the Galois field of GF(2k)

In order to construct and the Galois field of 2k elements, we need to
represent the elements of GF(2k), and we also need to show how we
can perform the field operations: addition, subtraction, multiplication,
and division (inversion) operations using this representation

It turns out there are more than one way to do that, for example,
polynomial representation and normal representation

First we will show how to represent field elements using polynomials,
and its associated arithmetic
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Representing the Elements of GF(2k)

The polynomial representation of the Galois field of GF(2k) is based
on the arithmetic of polynomials whose coefficients are from the base
field GF(2) and whose degree is at most k − 1

The elements of GF(2k) is polynomials whose degree is at most k − 1
and coefficients from GF(2), that is {0, 1}
Let a(α), b(α) ∈ GF(2k), then they are written as polynomials

a(α) = ak−1α
k−1 + · · ·+ a1α + a0

b(α) = bk−1α
k−1 + · · ·+ b1α + b0

such that ai , bi ∈ {0, 1}
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http://koclab.org


Fields in Cryptography Finite Fields, Irreducible Polynomials

Addition and Multiplication in GF(2k)

The field addition c(α) = a(α) + b(α) is performed by polynomial
addition, where the coefficients are added in GF(2), therefore,

c(α) = a(α) + b(α) = ck−1α
k−1 + · · ·+ c1α + c0

where ci = ai + bi (mod 2)

On the other hand, the field multiplication is performed by first
multiplying the polynomials, which would give a polynomial of degree
at most 2k − 2

Then, we reduce the product polynomial modulo an irreducible
polynomial of degree k
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Construction of GF(2k)

Therefore, in order to construct a Galois field GF(2k), we need an
irreducible polynomial of degree k

Irreducible polynomials of any degree exist, in fact, usually there are
more than one for a given k

We can use any one of these degree k irreducible polynomials, and
construct the field GF(2k)

It does not matter which one we choose

We just have to choose one and use that one only

All such GF(2k) fields are isomorphic to one another
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Irreducible Polynomials over GF(2)

k irreducible polynomials

1 α α + 1

2 α2 + α + 1

3 α3 + α + 1 α3 + α2 + 1

4 α4 + α + 1 α4 + α3 + 1 α4 + α3 + α2 + α + 1

5 α5 + α2 + 1 α5 + α3 + 1 α5 + α3 + α2 + α + 1

α5 + α4 + α3 + α + 1 α5 + α4 + α3 + α2 + 1 α5 + α4 + α2 + α + 1

6 α6 + α + 1 α6 + α3 + 1 α6 + α5 + 1

α6 + α4 + α2 + α + 1 α6 + α4 + α3 + α + 1 α6 + α5 + α2 + α + 1

α6 + α5 + α3 + α2 + 1 α6 + α5 + α4 + α2 + 1 α6 + α5 + α4 + α + 1

7 α7 + α + 1 α7 + α3 + 1 α7 + α4 + 1

α7 + α6 + 1 α7 + α3 + α2 + α + 1 α7 + α5 + α2 + α + 1

α7 + α5 + α3 + α + 1 α7 + α6 + α3 + α + 1 α7 + α4 + α4 + α + 1

α7 + α4 + α3 + α2 + 1 α7 + α6 + α4 + α2 + 1 α7 + α6 + α5 + α2 + 1

α7 + α5 + α4 + α3 + 1 α7 + α6 + α5 + α4 + 1
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Irreducible Polynomials over GF(2)

k irreducible polynomials

8 α8 + α4 + α3 + α + 1 α8 + α7 + α2 + α + 1 α8 + α5 + α3 + α + 1

α8 + α7 + α2 + α + 1 α8 + α6 + α5 + α + 1 α8 + α7 + α5 + α + 1

α8 + α7 + α6 + α + 1 α8 + α4 + α3 + α2 + 1 α8 + α5 + α3 + α2 + 1

α8 + α6 + α3 + α2 + 1 α8 + α7 + α3 + α2 + 1 α8 + α6 + α5 + α2 + 1

α8 + α5 + α4 + α3 + 1 α8 + α6 + α5 + α3 + 1 α8 + α7 + α5 + α3 + 1

α8 + α6 + α5 + α4 + 1 α8 + α7 + α5 + α4 + 1

257 α257 + α12 + 1 α257 + α41 + 1 α257 + α48 + 1

α257 + α51 + 1 α257 + α65 + 1 α257 + α192 + 1

α257 + α206 + 1 α257 + α209 + 1 α257 + α216 + 1

α257 + α245 + 1
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Construction of GF(22)

GF(22) has 22 = 4 elements: {0, 1, α, α + 1}
The field addition is performed by adding the field elements, where
the coefficients are added in GF(2)

+ 0 1 α α + 1

0 0 1 α α + 1
1 1 0 α + 1 α
α α α + 1 0 1

α + 1 α + 1 α 1 0

To perform field multiplication in GF(22), we need an irreducible
polynomial of degree 2

There exists only one irreducible polynomial of degree 2 which is
p(α) = α2 + α + 1
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Multiplication in GF(22)

Multiplication in GF(22) is performed by first multiplying the given
input polynomials, where the coefficient arithmetic is performed in
GF(2), and reducing the result mod p(α) = α2 + α + 1

For example, if a(α) = α and b(α) = α + 1, then we have

c(α) = α · (α + 1) = α2 + α

We now divide c(α) by p(α) and find the remainder r(α) as

α2 + α α2 + α + 1
α2 + α + 1 1
1

Since r(α) = 1, the product of α and α + 1 in GF(22) is equal to 1
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Multiplication in GF(22)

We only need perform reduction mod p(α) if the degree of the
resulting polynomial is more than 1

Reduction mod p(α) brings down the degree to k , and therefore,
finding an element of GF(2k) which are polynomials whose
coefficients are in GF(2) and the degree at most k − 1

If we continue with the construction of the multiplication table for
GF(22), we find the following

· 0 1 α α + 1

0 0 0 0 0
1 0 1 α α + 1
α 0 α α + 1 1

α + 1 0 α + 1 1 α
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Representing the Elements of GF(2k)

An element a(α) of GF(2k) is a polynomial of degree at most k − 1,
with coefficients from GF(2), as

a(α) = ak−1α
k−1 + · · ·+ a1α + a0

While the polynomial representation is the natural representation of
the elements of GF(2k), we can also represent a(α) using the
coefficient vector as (ak−1 · · · a1a0)

This is a binary vector, but it should not be confused with binary
representation of integers

Whenever we perform arithmetic with these vectors, we need to make
sure that they are correctly operated on, for example, addition of a(α)
and b(α) using their binary vector representation is performed by
adding the individual vector bits mod 2
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Construction of GF(23)

GF(23) has 23 = 8 elements:

{0, 1, α, α + 1, α2, α2 + 1, α2 + α, α2 + α + 1}

We can represent the field elements more compactly using the binary
vectors as {000, 001, 010, 011, 100, 101, 110, 111}, for example, 011
represents α + 1, 100 represents α2, and so on

The field addition is performed by adding coefficients in GF(2), which
corresponds to bitwise XOR operation

011 α + 1
⊕ 110 + α2 + α

101 α2 + 1
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Addition Table in GF(23)

+ 000 001 010 011 100 101 110 111

000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000
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Multiplication Table in GF(23)

To perform multiplication in GF(23), we need a polynomial of degree
3 over GF(2), which we select from the list as p(α) = α3 + α + 1

· 000 001 010 011 100 101 110 111

000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001

101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 001 100
111 000 111 101 010 001 110 100 011

An example: 101 · 100→ (α2 + 1) · α2 = α4 + α2, then the reduction
gives the product as α4 + α2 = α (mod α3 + α + 1) which is 010
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The Galois Field GF(32)

We have seen that the elements of GF(3) are {0, 1, 2} while its
arithmetic is addition and multiplication modulo 3

Similar to the GF(2k) case, in order to construct the Galois field
GF(3k), we need polynomials degree at most k − 1 whose coefficients
are in GF(3)

For example, GF(32) has 9 elements and they are of the form
a1α + a0, where a1, a0 ∈ {0, 1, 2}, which is given as

{0, 1, 2, α, α + 1, α + 2, 2α, 2α + 1, 2α + 2}

The addition is performed by polynomial addition, where the
coefficient arithmetic is mod 3, for example:

(α + 1) + (α + 2) = 2α
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Multiplication in GF(32)

In order to perform multiplication in GF(32), we need an irreducible
polynomial of degree 2 over GF(3)

This polynomial will be of the form α2 + aα + b such that
a, b ∈ {0, 1, 2}
Note that b 6= 0 (otherwise, we would have α2 + aα which is
reducible)

Therefore, all possible irreducible candidates are

α2 + 1, α2 + 2, α2 + α + 1, α2 + α + 2, α2 + 2α + 1, α2 + 2α + 2

A quick check shows that α2 + 1 is irreducible

The other two irreducible polynomials are α2 +α+ 2 and α2 + 2α+ 2
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Multiplication in GF(32)

Multiplication of a(α) and b(α) in GF(32) can be performed using

c(α) = a(α) · b(α) (mod α2 + 1)

For example, a(α) = α + 1 and b = 2α + 1 gives

c(α) = (α + 1) · (2α + 1) (mod α2 + 1)

= 2α2 + 3α + 1 (mod α2 + 1)

= 2α2 + 1 (mod α2 + 1)

= 2

Note in the construction of a Galois field, we select and use only one
of the irreducible polynomials
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The Galois Field GF(28)

The Galois field GF(28) has 28 = 256 elements:

{0, 1, α, α+ 1, α2, α2 + 1, . . . , α7 + α6 + α5 + α4 + α3 + α2 + α+ 1}

We represent the field elements using the binary vectors of length 8
{00000000, 00000001, . . . , 11111110, 11111111}
The addition and multiplication tables are quite large, each of which
has 256 rows and 256 columns, and each entry is 8 bits (1 byte),
requiring 256 · 256 = 64k bytes of memory space for each table

GF(28) is the building block of the Advanced Encryption Standard

AES uses the irreducible polynomial p(α) = α8 + α4 + α3 + α + 1
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Inversion in GF(2k)

Given a ∈ GF(2k), its multiplicative inverse a−1 ∈ GF(2k) is also in
the field, and is the element with the property a · a−1 = 1, except
when a = 0

The additive inverse −a in fields of characteristic 2 is the element
itself: a + a = 0

There are various ways to compute the multiplicative inverse, for
example, the extended Euclidean algorithm or Fermat’s theorem

Since the multiplicative group of GF(2k) is of order 2k − 1, for any

nonzero a ∈ GF(2k), we have a2
k−1 = 1

Therefore, a−1 can be computed using a−1 = a2
k−2 since

a · a2k−2 = a2
k−1 = 1
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