
Implementing Elliptic Curve Cryptography
(a narrow survey)

Institute of Computing – UNICAMP
Campinas, Brazil

April 2005

Darrel Hankerson
Auburn University

Implementing ECC – 1/110

Overview

Objective: sample selected topics of practical interest.

Talk will favor:

I Software solutions on general-purpose processors
rather than dedicated hardware.

I Techniques with broad applicability.

I Methods targeted to standardized curves.

Goals:

I Present proposed methods in context.

I Limit coverage of technical details (but “implementing”
necessarily involves platform considerations).

Implementing ECC – 2/110

Focus: higher-performance processors

“Higher-performance” includes processors commonly
associated with workstations, but also found in surprisingly
small portable devices.

Sun and IBM workstations RIM pager circa 1999
SPARC or Intel x86 (Pentium) Intel x86 (custom 386)

256 MB – 8 GB 2 MB “disk”, 304 KB RAM
0.5 GHz – 3 GHz 10 MHz, single AA battery

heats entire building fits in shirt pocket

Implementing ECC – 3/110

Optimizing ECC

Elliptic Curve Digital Signature

Algorithm (ECDSA)

Big number and

arithmetic

Random number

modular arithmetic

Curve

arithmetic
qF field

generation

General categories of optimization efforts:

1. Field-level optimizations.

2. Curve-level optimizations.

3. Protocol-level optimizations.

Constraints: security requirements, hardware limitations,
bandwidth, interoperability, and patents.

Implementing ECC – 4/110

Optimizing ECC...

1. Field-level optimizations.
I Choose fields with fast multiplication and inversion.
I Use special-purpose hardware (cryptographic

coprocessors, DSP, floating-point, SIMD).

2. Curve-level optimizations.
I Reduce the number of point additions (windowing).
I Reduce the number of field inversions (projective

coords).
I Replace point doubles (endomorphism methods).

3. Protocol-level optimizations.
I Develop efficient protocols.
I Choose methods and protocols that favor your

computations or hardware.

Implementing ECC – 5/110

Context: Protocols such as ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is
the elliptic curve analogue of the DSA.

Provides data origin authentication, data integrity, and
non-repudiation.

Jan 1999 ECDSA formally approved as an ANSI standard –
ANSI X9.62.

Jan 2000 ECDSA formally approved as a US Federal Gov stan-
dard – FIPS 186-2.

Aug 2000 ECDSA formally approved as an IEEE standard –
IEEE 1363-2000

Feb 2005 NSA recommends algs for securing US Gov sensitive
but unclassified data: ECDSA selected for authenti-
cation.

Implementing ECC – 6/110

ECDSA Signature Generation

Signer A has domain parameters D (consisting of the curve,
field, base point G, etc.), private key d, and public key
Q = dG. B has authentic copies of D and Q.

I To sign a message m, A does the following:

1. Select a random integer k from [1,n−1].
2. Compute kG= (x1,y1) and r = x1 modn.

3. Compute e= SHA-1(m).

4. Compute s= k−1{e+ dr} modn.

5. A’s signature for the message m is (r,s).

I The computationally expensive operation is the scalar
multiplication

kG= G+ G+ · · ·+ G︸ ︷︷ ︸
k times

in step 2, for a point G which is known a priori.
Implementing ECC – 7/110

ECDSA Verification

I To verify A’s signature (r,s) on m, B does:

1. Verify that r and s are integers in [1,n−1].
2. Compute e= SHA-1(m).

3. Compute w = s−1 modn.
4. Compute u1 = ewmodn and u2 = rw modn.

5. Compute u1G+ u2Q = (x1,y1).

6. Compute v = x1 modn.
7. Accept the signature if and only if v = r .

I The computationally expensive operation is the scalar
multiplications u1G and u2Q in step 5, where only G is
known a priori.

Implementing ECC – 8/110

Deployment Notes...

US National Security Agency (NSA) and ECC

Fall 2003

NSA obtains licensing rights to Menezes-Qu-Vanstone
(MQV). Covers curves over Fp for 256-bit or larger p.

February 2005, at the RSA conference

NSA presents strategy and recommendations for
securing US Gov sensitive and unclassified
communications.

“Suite B” protocols for key agreement and
authentication are ECC only: ECMQV and ECDH for
key agreement, and ECDSA for auth.

Implementing ECC – 9/110

Deployment Notes...

Example: BlackBerry 2-way pager

I Marketing demands 256-bit AES.

I Key size comparison.

Symmetric cipher
key length

Example
algorithm

ECC key
length

RSA/DL key
length

80 SKIPJACK 160 1024

112 Triple-DES 224 2048

128 AES-Small 256 3072
192 AES-Medium 384 8192

256 AES-Large 512 15360

I ECC especially attractive here.

Implementing ECC – 10/110

Deployment Notes...

I Timings on BlackBerry 7230 for 128-bit security.

ECC (256) RSA (3072) DH (3072)

Key generation 166 ms Too long 38 s

Encrypt or verify 150 ms 52 ms 74 s

Decript or sign 168 ms 8 s 74 s

Source: Herb Little, RIM.

I BlackBerry EC algorithms.

Facility Protocol

Over the Air (OTA) Provisioning ECSPEKEa (ECDH-512)

Policy Authentication ECDSA

OTA Re-key ECMQV
aSimple Password Exponential Key Exhange.

I RSA-1024 used for code signing (for verify speed).

Implementing ECC – 11/110

Topic I

Prerequisites

Implementing ECC – 12/110

Elliptic curve groups

1. Interested in elliptic curves in simplified Weierstrass
forms

y2 = x3 + ax+ b, char K 6= 2,3

y2 + xy= x3 + ax2 + b, char K = 2.

over finite fields K.

2. E(K) = {(x,y) ∈ K×K | (x,y) solves the equation}∪{∞}.
3. The chord-and-tangent rule make E(K) into an abelian

group with the point at infinity ∞ as the identity.

4. Scalar (or point) multiplication is the operation

kP= P+ P+ · · ·+ P︸ ︷︷ ︸
k times

where k is an integer.

Implementing ECC – 13/110

Chord-and-tangent rule

R= (x3, y3)

x

y

P = (x1, y1)

Q = (x2, y2)

(a) Addition: P+Q = R.

R= (x3, y3)

x

y

P = (x1, y1)

(b) Doubling: P+P = R.

Geometric addition and doubling of elliptic curve points

Implementing ECC – 14/110

Point Arithmetic

R= (x3, y3)

x

y

P = (x1, y1)

Q = (x2, y2)

R= (x3, y3)

x

y

P = (x1, y1)

Addition and Doubling
Let P = (x1,y1), Q = (x2,y2).

op λ x y

char K /∈ {2,3}, curve: y2 = x3 +ax+b
−P x1 −y1

P+Q (y2−y1)/(x2−x1) λ 2−x1−x2 λ (x1−x)−y1

2P (3x2
1 +a)/2y1 λ 2−2x1 λ (x1−x)−y1

char K = 2, curve: y2 +xy= x3 +ax2 +b
−P x1 x1 +y1

P+Q (y1+y2)/(x1+x2) λ 2 + λ +x1 +x2 +a λ (x1 +x) +x+y1

2P x1 +y1/x1 λ 2 + λ +a = x2
1 + b

x2
1

x2
1 + λx+x

Implementing ECC – 15/110

Calculating kP

Simple double-and-add approach:

1. Write k =
t−1
∑

i=0
ki2i for ki ∈ {0,1}.

2. Q←∞.
3. For i from t−1 to 0 do

3.1 Q←2Q.
3.2 If ki = 1 then Q←Q+P.

4. Return Q.

Analysis: t point doubles and expected t/2 additions.

Improving the performance:

I Reduce the number of point additions (windowing).
I Reduce the number of field inversions (projective

coordinates).
I Replace point doubles (efficient endomorphisms).
I Use curves over fields where fast arithmetic is available.

Implementing ECC – 16/110

Calculating kP...

Simple double-and-add approach has t point doublings and
an expected t/2 additions.

Reduce adds by writing k in non-adjacent form (NAF):

NAF(k) =
t

∑
i=0

ki2
i, where ki ∈ {0,±1} and ki+iki = 0.

1. Find NAF(k) =
t
∑

i=0
ki2i . Set Q←∞.

2. For i from t to 0 do

2.1 Q←2Q.
2.2 If ki = 1 then Q←Q+P.
2.3 If ki =−1 then Q←Q−P.

3. Return Q.

Analysis: t point doublings and an expected t/3 additions.

Implementing ECC – 17/110

Width- w NAF

NAF reduces the number of required point additions. Can be
generalized to a width-w NAF.

1. k =
t
∑
i=0

ki2i , where ki ∈ {0,±1,±3, . . . ,±2w−1−1}.

2. Among w consecutive digits, at most one is nonzero.

3. t ≤ blog2kc+ 1.

4. Density is 1/(w+ 1). A NAF is a width-2 NAF.

Example: 13 (base 10) has expansions

(1,0,−1,0,1)︸ ︷︷ ︸
NAF

= (1,1,0,1)︸ ︷︷ ︸
binary

= 1310 = 1·24 +(−3) ·20 = (1,0,0,0,−3)︸ ︷︷ ︸
width-3 NAF

.

Analysis: kP by width-w NAF has t doublings and an ex-

pected t/(w+ 1) additions.

Implementing ECC – 18/110

Width- w NAF...

Calculting the w-NAF is inexpensive.

I Solinas [DCC 2000] gives alg using only simple bit
operations.

I Digits of w-NAF k = ∑ki2i produced right-to-left (k0
first).

I Some point mult algs want to process left-to-right, so
typically digits of w-NAF are stored.

Avanzi [SAC 2004] gives (optimal) left-to-right calculation of
w-NAF variant. See also Muir and Stinson [CACR Tech
Rep].

Implementing ECC – 19/110

Montgomery’s method

Montgomery’s method is a useful benchmark for point
multiplication algorithms for curves

y2 + xy= x3 + ax2 + b

over binary fields. (Due to López and Dahab and based on
an idea of Montgomery.)

I Let Q1 = (x1,y1) and Q2 = (x2,y2) with Q1 6=±Q2.

I Let Q1 + Q2 = (x3,y3) and Q1−Q2 = (x4,y4).

I Then

x3 = x4 +
x2

x1 + x2
+
(

x2

x1 + x2

)2

.

I Thus, the x-coordinate of Q1 + Q2 can be computed
from the x-coordinates of Q1, Q2 and Q1−Q2.

Implementing ECC – 20/110

Montgomery’s method...

(kt−1kt−2 · · ·kt− j︸ ︷︷ ︸kt−(j+1)︸ ︷︷ ︸kt−(j+2) · · ·k1k0)2P

↓ ↓

[lP,(l +1)P]→ [2lP, lP+(l +1)P], if kt−(j+1) = 0

[lP+(l +1)P,2(l +1)P], if kt−(j+1) = 1

I Each iteration requires one doubling and one addition.

I Possesses natural resistance to some side-channel
attacks.

I No extra storage.

I Produces only the x-coordinate of the result, sufficient
for ECDSA.

Implementing ECC – 21/110

Obtaining the y-coordinate

Two methods to find y-coordinate from a Montgomery
multiplication:

1. (Direct) After the last iteration, have the x-coordinates
of kP= (x1,y1) and (k+ 1)P = (x2,y2). y-coordinate of
kP can be recovered as:

y1 = x−1(x1 + x)[(x1 + x)(x2 + x) + x2 + y] + y.

(Derived using the addition formula for x-coord x2 of
(k+ 1)P from kP= (x1,y1) and P = (x,y).)

2. (Point compression method) Guess at the y-coordinate
of kP (e.g., solve quadratic y2 + x1y = x2

1 + ax2
1 + b),

obtaining ỹ1.
Compute the x-coord of (x1, ỹ1) + (x,y). If this agrees
with the x-coord of (k+ 1)P then set y1 = ỹ1; otherwise
set y1 = ỹ1 + x1.

Implementing ECC – 22/110

Projective coordinates

Let c,d be positive integers. Define equivalence relation ∼
on K3\{(0,0,0)} by

(X1,Y1,Z1)∼ (X2,Y2,Z2) if (X1,Y1,Z1) = (λ cX2,λ dY2,λZ2)
for some λ ∈ K∗. An equivalence class is called a projective
point.

Projective form Relation Name

Curve: y2 = x3 +ax+b

Y2Z = X3 +aXZ2 +bZ3 (X/Z,Y/Z) projective

Y2 = X3 +aXZ4 +bZ6 (X/Z2,Y/Z3) Jacobian

Curve: y2 +xy= x3 +ax2 +b

Y2Z+XYZ= X3 +aX2Z+bZ3 (X/Z,Y/Z) projective

Y2 +XYZ= X3 +aX2Z2 +bZ6 (X/Z2,Y/Z3) Jacobian

Y2 +XYZ= X3Z+aX2Z2 +bZ4 (X/Z,Y/Z2) López-Dahab (LD)

Implementing ECC – 23/110

Projective coordinates...

Field inversion is typically expensive relative to field
multiplication.

I Projective coordinates reduce the number of field
inversions in point arithmetic.

I Point addition in affine for F2m:

λ←(y1+y2)/(x1+x2)
x←λ 2 +λ +x1 +x2 +a, y←λ (x1 +x)+x+y1

I Projective (X : Y : Z) = (X1 : Y1 : Z1) + (X2 : Y2 : 1):

A←Y2Z2
1 +Y1, B←X2Z1 +X1, C←Z1B, D←B2(C+aZ2

1),

Z←C2, E←AC, X←A2 +D+E, F←X +X2Z,

G←(X2 +Y2)Z2, Y←(E +Z)F +G.

Implementing ECC – 24/110

Projective coordinates...

Affine vs projective field operation counts:
Doubling Addition (mixed)

Curve y2 +xy= x3 +ax2 +b, a∈ {0,1}
Affine 1I , 2M 1I , 2M
López-Dahab (X/Z,Y/Z2) 4M 8M

Curve y2 = x3 +ax+b, a =−3
Affine 1I , 2M, 2S 1I , 2M, 1S
Jacobian (X/Z2,Y/Z3) 4M, 4S 8M, 3S
I = inversion, M = multiplication, S= squaring

Rough estimate of threshold I/M in binary case: kP by
non-adjacent form

I +2M +
1
3

(I +2M) = D+
1
3

A︸ ︷︷ ︸
affine

≤ Dproj +
1
3

Aproj = 4M +
1
3

8M︸ ︷︷ ︸
projective

gives I ≤ 3M.

Implementing ECC – 25/110

Point multiplication costs

Example kP for the NIST random binary curve B-163 over
field F2163 = F2[z]/(z163+ z7 + z6 + z3 + 1).

Points EC operations Field operationsa

Method Coordinates w stored A D M I I/M=5 I/M=8

Unknown point (kP, on-line precomputation)

Binary affine 0 0 81 162 486 243 1701 2430

Projective 0 0 81 162 1298 1 1303 1306

Binary NAF affine 0 0 54 162 432 216 1512 2160

projective 0 0 54 162 1082 1 1087 1090

Window NAF affine 4 3 35 163 396 198 1386 1980

projective 4 3 3b+32 163 914 5 939 954

Montgomery affine – 0 162c 162d 328 325 1953 2928

projective – 0 162c 162d 982 1 987 990
aRight columns give costs in terms of field mults for I/M = 5 and I/M = 8.
bAffine. cAddition for Montgomery. dx-coordinate only.

Required point doubles limit the improvement via w-NAFs.
Implementing ECC – 26/110

Appendix: NIST curves over binary fields

1. Koblitz curves:

K-163 y2 +xy= x3 +x2 +1 over F2163, cofactor 2
f = x163+x7 +x6 +x3 +1

K-233 y2 +xy= x3 +1 over F2233, cofactor 4
f = x233+x74+1

K-283 y2 +xy= x3 +1 over F2283, cofactor 4
f = x283+x12+x7 +x5 +1

K-409 y2 +xy= x3 +1 over F2409, cofactor 4
f = x409+x87+1

K-571 y2 +xy= x3 +1 over F2571, cofactor 4
f = x571+x10+x5 +x2 +1

2. Randomly-generated curves B-{163, 233, 283, 409,
571} over each of these fields, each with cofactor 2:
y2 + xy= x3 + x2 + b.

Implementing ECC – 27/110

Appendix: NIST curves over prime fields

Curves y2 = x3−3x+ b randomly generated and have
prime order.

Curve Prime p

P-192 2192−264−1
P-224 2224−296+ 1
P-256 2256−2224+ 2192+ 296−1
P-384 2384−2128−296+ 232−1
P-521 2521−1

Special form of the prime speeds reduction.

Implementing ECC – 28/110

Appendix: Basic facts for curves over prime fields

1. There are about 2p different elliptic curves over Fp.

2. E(Fp) is an abelian group with identity ∞.

3. (Hasse’s Theorem) The number of points on the elliptic
curve is #E(Fp) = p+ 1− t where |t| ≤ 2

√
p; that is,

p+ 1−2
√

p≤ #E(Fp)≤ p+ 1+ 2
√

p.

Hence, #E(Fp)≈ p.

4. #E(Fp) can be computed in polynomial time using
Schoof’s algorithm.

5. E(Fp) is isomorphic to Zn1⊕Zn2 where n2 divides both
n1 and p−1.

Corresponding facts hold if Fp is replaced by any finite field.

Implementing ECC – 29/110

Topic II

Endomorphism methods

Implementing ECC – 30/110

Reducing the cost of doubling

1. Use projective coordinates when I/M is large.
Eliminates most field inversions.

2. Use precomputation if the point is known in advance
(e.g., in signature generation) and the additional
memory requirement is acceptable.

3. Replace doubling by halving in the binary case.

4. Replace (some) doublings by other efficiently
computable maps.

Implementing ECC – 31/110

Replace doublings: efficient endomorphisms

1. (multiplication by mmap) [m] : P 7→mP. Special case:
P 7→ −P.

2. (qth power map) φ : (x,y) 7→ (xq,yq) for E defined over
Fq. Particular case: Koblitz curves, q = 2.

3. Let p≡ 1 (mod 3). Consider E : y2 = x3 + b defined
over Fp. If β ∈ Fp is of order 3, then

φ : (x,y) 7→ (βx,y)

is an endomorphism.

For q = 2, the map in 2 is inexpensive compared with field
mult, and the map in 3 is a single field mult.

Koblitz curves: inexpensive applications of φ replace point
doubles. (Point halving has similar goal.)

Example 3 allows the number of doublings to be reduced.
Implementing ECC – 32/110

Koblitz curves

Define curves over F2:
E0 : y2 + xy= x3 + 1
E1 : y2 + xy= x3 + x2 + 1

am−1

�������
· · · a1

��99999
a0

%%KKKKKKK

am−1 0 · · · 0 a1 0 a0

Squaring a binary polynomial
am−1zm−1+ . . .+ a1z+ a0.

I (Frobenius map) τ : (x,y) 7→ (x2,y2).

I τ2P+ 2P = µτ(P) for µ = (−1)1−a and curve points P.

I τ2 + 2 = µτ =⇒ τ = µ+
√
−7

2 .

I Makes sense to multiply points in Ea(F2m) by elements
of Z[τ]:

(ul τ l + · · ·+u1τ +u0)P = ul τ l(P)+ · · ·+u1τ(P)+u0P

Applying τ (field squaring) is inexpensive in comparison to
field multiplication.

Implementing ECC – 33/110

Strategy for kP on a Koblitz curve

Basic idea: since field squaring is cheap, expand k as ∑kiτ i

with |ki| small and sparse (to reduce the number of required
point additions).

I Z[τ] is Euclidean with respect to N : α 7→ αα .

I Finding a width-w τ-NAF is analogous to ordinary
width-w NAF: for odd r0 + r1τ , the element of the
equivalence class (mod τw) is subtracted, and the
result is divisible by τw.

Example: representatives are αu = u modτw. If w = 3
and a = 0, then α1 = 1, α3 = τ + 1, and

5 =−τ5 + 0τ4 + 0τ3 + 0τ2 + 0τ1− (τ + 1)τ0

gives a width-3 τ-NAF of 5. Then 5P =−τ5α1P−α3P.

Implementing ECC – 34/110

Strategy...

To compute kP for P in the main subgroup of E(F2m):

1. Compute αuP for odd u< 2w−1.

2. Compute k′ = k mod(τm−1)/(τ−1) in Z[τ].
3. Find the width-w τ-adic expansion ∑t

i=0ciτ i of k′,

where t ≈m and ci ∈ {±αu}∪{0}.
4. Q←∞.

5. For i from t to 0 do

5.1 Q←τQ.

5.2 If ci 6= 0 then add or subtract appropriate αuP.

6. Return (Q).

No point doublings. Expect roughly m/(w+ 1) point
additions.

J. Solinas, Efficient arithmetic on Koblitz curves. Designs, Codes
and Cryptography, 2000.

Implementing ECC – 35/110

Operation counts

Point doubles and additions expected in finding kP for a
curve over F2m with m= 233.

curve method doubles adds

random double and add 232 116

NAF 232 78

width-4 NAF 1+232 3+47

Koblitz τ-NAF 0 78

width-4 τ-NAF 0 3+47

I Applying τ requires two or three field squarings, each
costing roughly 15% of a field multiplication.

I Finding k′ (for the τ-adic NAF) is not free.

Implementing ECC – 36/110

Using efficient endomorphisms

GLV observed that an endomorphism may be used to
reduce the number of doubles (even if a Koblitz-like
expansion is not efficient).

Example (WAP)

I Let p≡ 1 (mod 3). (In P-160, p = 2160−229233.)

I Let E : y2 = x3 + b, and let β ∈ Fp be an element of
order 3.

I φ : (x,y) 7→ (βx,y) is an endomorphism.
I Computing φ requires only 1 field multiplication.

I |φ |= 1.

1. Gallant, Lambert, and Vanstone. Faster point multiplication on
elliptic curves with efficient endomorphisms, CRYPTO 2001.

2. Park, Jeong, and Kim. An alternate decomposition of an integer
for faster point multiplication on certain elliptic curves, PKC 2002.

Implementing ECC – 37/110

Using efficient endomorphisms...

Let G∈ E(Fp) be a point of prime order n.

I φ acts on 〈G〉 by multiplication: φP = λP, where λ is a
root (modulo n) of the characteristic polynomial of φ .
(λ 2 + λ ≡−1 (mod n) in the example.)

I To compute kP:

• Write k≡ k1 +k2λ (mod n) where |ki| ≈
√

n. (This
can be done efficiently.)

• kP= k1P+ k2λP = k1P+ k2φ(P), which can be
computed via interleaving.

k1,t · · · k1,1 k1,0 width-w NAF of k1

k2,t · · · k2,1 k2,0 width-w NAF of k2

Approx half the doubles are eliminated. Cost of finding
ki negligible if domain parameters are set in advance.

Implementing ECC – 38/110

A very special case

Solinas (CORR 2001-41) gives an example where finding k1
and k2 is free.

p = 2390+3≡ 1 (mod 3)

E : y2 = x3−2 over Fp

n = #E(Fp) = 2390−2195+7 = 63r, r prime

λ = 2195−2
3 , β = 2389+2194+1 modp =⇒ λ (x,y) = (βx,y)

Write k = k′22
195+ k′1 for k′1 < 2195. Then

kP= (2195k′2 +k′1)P = ((3λ +2)k′2 +k′1)P = (2k′2 +k′1)︸ ︷︷ ︸
k1

P+ 3k′2︸︷︷︸
k2

λP

= k1(x,y) +k2((2389+2194+1)x,y)

The cost of calculating βx is less than a field multiplication.

Implementing ECC – 39/110

Point halving for curves over binary fields

I Doubling in affine: seek 2P = (x2,y2) from P = (x,y).
Let λ = x+ y/x. Calculate:

x2 = x2 + b/x2

y2 = x2 + λx2 + x2

(2 mul, 1 mul by b, 1 inv)

or
x2 = λ 2 + λ + a
y2 = x2 + λx2 + x2

(2 mul, 1 inv)

I Halving: seek P = (x,y) from 2P = (x2,y2). Basic idea:
solve

x2 = λ 2 + λ + a for λ
y2 = x2 + λx2 + x2 for x

1. E. Knudsen, Elliptic scalar multiplication using point halving,
Asiacrypt ’99.

2. R. Schroeppel, Elliptic curve point ambiguity resolution apparatus
and method, patent application, 2000.

Implementing ECC – 40/110

Point halving...

Facts

1. Tr(c) = c+ c2 + · · ·+ c2m−1 ∈ {0,1}.
2. The NIST random binary curves all have Tr(a) = 1.

Tr(x(kG)) = Tr(a) for generator G.

Halving for the trace 1 case

1. Solve

λ̂ 2 + λ̂ = x2 + a

obtaining λ̂ = λ or λ̂ = λ + 1.

2. Since y2 = x2 + λx2 + x2, consider

x̂2 = (λ̂ + 1)x2 + y2

Tr(x2) = Tr(x) = Tr(a) = 1, so Tr((λ̂ + 1)x2 + y2)
identifies λ .

3. Find x =
√

x2(λ + 1) + y2.
Implementing ECC – 41/110

Point halving...

Halving: (x2,y2)→ (x,λ = x+ y/x) where 2(x,y) = (x2,y2);
y may be recovered via

λx = x2 + y =⇒ y = λx+ x2 (≈ 1 field mult)

Algorithm (point halving) INPUT: (x2,λ2) or (x2,y2).
OUTPUT: (x,λ = x+ y/x) where 2(x,y) = (x2,y2).

Steps Cost

1. Solve λ̂ 2 + λ̂ = x2 +a for λ̂ . ≈ 2/3 field mult

2. Find T = x2(λ̂ +λ2 +x2 +1) ≈ 1 field mult

or T = x2(λ̂ +1)+y2

3. If Tr(T) = 1 then λ = λ̂ , x =
√

T Tr≈ free

else λ = λ̂ +1, x =
√

T +x2. root ≈ 1/2 field mult

4. Return(x,λ).

Conversion to affine (x,λ)→ (x,y) is ≈ 1 field mult.

(Doubling in projective ≈ 4 field mults.)
Implementing ECC – 42/110

Calculating kP by halve-and-add

Algorithm (halve-and-add, right-to-left)
INPUT: point P and scalar k. OUTPUT: kP.

1. (Precomputation) Solve quadratic equations (21–30 field el-
ements for B -163). Build table of 16 multiples of

√
x.

2. (Transform k) Solve

k = kt2
t + · · ·+k0 = k′t/2

t + · · ·+k′1/2+k′0 (mod n)

for k′; i.e., 2tk modn = k′02t + · · ·+k′t .
3. Q←∞.
4. For i from 0 to t do

4.1 If k′i = 1 then Q←Q+P.
4.2 P←P/2.

5. Return(Q).

I Looks best when I/M small.

I Multiple accumulators allow right-to-left with width-w
NAF variant.

Implementing ECC – 43/110

Summary: Efficient endomorphisms

1. If curve can be selected, GLV offers a dramatic
speedup for on-line precomp case.

2. Halving is a significant improvement for kP on binary
curves in on-line precomp case, especially if I/M is
small.

3. Frobenius endomorphism τ on Koblitz curves is
significantly better than halving.

4. Siet, Lange, Sica, Quisquater [SAC 2002] extend
Koblitz-like expansions to other curves. Less useful if
the endomorphism costs more than 1/2 point double.

Implementing ECC – 44/110

Summary: Efficient endomorphisms...

5. Avanzi, Siet, and Sica [PKC 2004] give a scalar
recoding that combines a halving step with Frobenius
method on Koblitz curves. Trades some point additions
for a halving.

Practical interest may be limited, since it seems
unlikely that there’s room for halving code, but not
for an additional point of storage and 3-TNAF.

Implementing ECC – 45/110

Appendix: Operation count

Example kP for the NIST random binary curve B-163 over
field F2163 = F2[z]/(z163+ z7 + z6 + z3 + 1).

Points EC operations Field operationsa

Method Coordinates w stored A D M I I/M=5 I/M=8

Unknown point (kP, on-line precomputation)

Window NAF affine 4 3 35 163 396 198 1386 1980

projective 4 3 3b+32 163 914 5 939 954

Montgomery affine – 0 162c 162d 328 325 1953 2928

projective – 0 162c 162d 982 1 987 990

Halving w-NAF affine 5 7 7+27e 1+163f 423 35 598 705

projective 4 3 6+30e 3+163f 671 2 681 687

Window TNAF affine 5 7 34 0g 114 34 284 386

projective 5 7 7b+27 0g 301 8 341 365
aRight columns give costs in terms of field mults for I/M = 5 and I/M = 8.
bAffine. cAddition for Montgomery. dx-coordinate only. eCost A+ M.
fHalvings; est. cost 2M. gField ops include applications of τ with S= M/7.

Implementing ECC – 46/110

Appendix: Timings (800 MHz Intel Pentium III)

NIST Field Pentium III (800 MHz)
curve Method mult M normalized M µs

Unknown point (kP, on-line precomputation)
P-192 5-NAF (w = 5) 2016 2016 975
B-163 4-NAF (w = 4) 954 2953 1475
B-163 Halving (w = 4) 687 2126 1050
K-163 5-TNAF (w = 5) 365 1130 625

Fixed base (kP, off-line precomputation)
P-192 Comb 2-table (w = 4) 718 718 325
B-163 Comb 386 1195 575
K-163 6-TNAF (w = 6) 263 814 475

Multiple point multiplication (kP+ lQ)
P-192 Interleave (w = 6,5) 2306 2306 1150
B-163 Interleave (w = 6,4) 1154 3572 1800
K-163 Interleave TNAF (w = 6,5) 565 1749 1000

Timings using general-purpose registers. M is the estimated field multiplications
with I/M = 80and I/M = 8 in the prime and binary fields. Normalization gives
equivalent P-192 field mults for this implementation.

Implementing ECC – 47/110

Appendix: Timings...

1. Timings for Koblitz curves significantly faster than for
random binary or prime in on-line precomp case.

2. Faster prime field multiplication gives P-192 the edge
for off-line precomp case.

3. Results depend on processor and implementation.
I Only general-purpose registers used.

I Pentium III has floating-point registers which can accelerate
prime field arithmetic, and single-instruction multiple-data
(SIMD) registers that are easily harnessed for binary fields.

I Integer multiplication with general-purpose registers on P-III
is faster than on earlier or newer Pentium family processors.
P-192 may be less competitive if hardware mult is weaker or
operates on fewer bits.

4. The case where a large amount of storage is available
for precomp in known-point methods is not addressed.

Implementing ECC – 48/110

Topic III

Normal Basis Arithmetic

Implementing ECC – 49/110

Normal bases in characteristic 2

Representing F2m field elements:

Polynomial basis: {1,x, . . . ,xm−1}, reduction poly f .

Normal basis: {β 20
,β 21

,β 22
, . . . ,β 2m−1}.

Motivation for use of normal basis reps:

I Squaring, square root are shifts. x2 + x = c can be
solved bitwise.

I Performance of square root and quadratic solver is
fundamental to methods based on point halving.

I Low complexity (Gaussian) NB bases have especially
nice arithmetic.

Methods in 1990s seem to confirm that NB mult will be very
slow in software compared to PB.

Ning & Yin [ICICS 2001] precompute shifts and significantly
improve NB mult (at the cost of data-dependent storage).

Implementing ECC – 50/110

NB Multiplication

Obtain the multplication table for basis {β 2i}:

β 2i
β 2j

=
m−1

∑
s=0

λ (s)
i j β 2s

,

Then c = ab is given by

cs =
m−1

∑
i=0

m−1

∑
j=0

ai+sbj+sλ
(0)
i j .

Define m×m matrix M = [λ (0)
i j]:

cs = (asas+1 . . .as+m−1)M(bsbs+1 . . .bs+m−1)′.
I Number of 1s in M is the complexity CM.

I CM ≥ 2m−1. Basis is optimal if CM = 2m−1.

I Optimal bases introduced by Mullin, Onyszchuk,
Vanstone, and Wilson to reduce hardware complexity.

Implementing ECC – 51/110

Gaussian normal bases

Optimal bases are relatively rare. Only m= 233 in the NIST
recommended fields has an ONB.

Generalization: Gaussian normal bases.

I Let p = mT+ 1 be a prime. K = 〈u〉 where u∈ Z∗p has
order T.

I Suppose index e of 〈2〉 in Z∗p satisfies gcd(e,m) = 1.
Then

Z∗p = {2iuj | 0≤ i <m, 0≤ j < T},
and Ki = K2i for 0≤ i <m are the cosets of K in Z∗p.

I p | 2mT−1 =⇒ there is a primitive pth root of unity
α ∈ F2mT.

I Gauss periods of type (m,T) are βi = ∑ j∈Ki
α j for

0≤ i <m.

Implementing ECC – 52/110

Gaussian normal bases...

I Let β = β0. Then βi = β 2i
, and {β 2i} is a normal basis

for F2m called a type T GNB.

I CM ≤mT−1. T is a measure of the complexity of the
mult.

I ONBs are precisely the GNBs with T ∈ {1,2}.

NIST recommended fields F2m and type of GNB.

m 163 233 283 409 571

Type 4 2 6 4 10

Implementing ECC – 53/110

Vector multiplication

Basic idea in Ning and Yin is precomputation of shifts.

I Let δi = ββ 2i
.

I Let ni be the number of 1s in NB rep of δi , and let wik

satisfy δi = ∑ni
k=1β 2wik .

I Facts: ni ≤ T . c = ab is given by

cs = asb1+s+
m−1

∑
i=1

ai+s

T

∑
k=1

bwik+s.

Rosing, Ning and Yin, and Reyhani-Masoleh and Hasan
observed that the computation can be written:

c0
c1
...

cm−1

=


a0
a1
...

am−1

�


b1
b2
...

b0

⊕m−1

∑
i=1


ai

ai+1
...

ai+m−1

�



bwi1
bwi1+1

...
bwi1+m−1

⊕·· ·⊕


bwiT
bwiT +1

...
bwiT +m−1




Implementing ECC – 54/110

Vector multiplication...

To find c = ab:

I Precompute all m required shifts for a and b.
Copy the precomputation to simplify indexing in
evaluation phase. Total storage: 4m words.

I Evaluation has mT XOR and m AND operations on field
elements.

Variations (Dahab, H, Hu, Long, López, Menezes):

I Efficient one-table (e.g., precomputation for a only)
versions.

I For type 1, use matrix decompostion of Hasan, Wang,
and Bhargava to reduce complexity to essentially m.
(But type 1 means m is even.)

Implementing ECC – 55/110

Vector multiplication...

The good news

I Significantly faster than preceding methods in software
for NB.

I Easy to code and relatively easy to optimize.

Some bad news

I 2m or 4m words of dynamic storage.

I Still much slower than methods for polynomial basis.

F2m field multiplication (in µs), 800 MHz Intel Pentium III. Other
than L-D, input and output are in NB.

L-D Ning&Yin DHHLLM
m Type comb 2 table 1 table Ring map

162 1 1.3 6.7 5.0∗ 2.7
163 4 1.3 9.6 8.4 10.4
233 2 2.3 11.4 11.7 7.1
∗Uses matrix decomposition.

Implementing ECC – 56/110

Ring mapping method

Basic idea for GNB: map to an associated ring and use fast
methods for polynomial basis reps.

Basis conversion approach

I Technique is well-known for the type 1 case, where the
mapping is a permutation.

I Sunar and Koç [ToC 2001] is a basis conversion
approach for type 2 that exploits properties of the map.

Ring mapping approach

I Arithmetic in the ring is modulo a cyclotomic polynomial
(and so has especially simple reduction).

I “Palindromic representation” of Blake, Roth, and
Seroussi is the special case for type 2.

I General case has a factor T expansion, a significant
hurdle.

Implementing ECC – 57/110

Ring mapping method...

Assume β is a Gauss period of type (m,T) and is a normal
element. For a∈ F2m:

a =
m−1

∑
i=0

aiβ 2i
=

m−1

∑
i=0

ai ∑
j∈Ki

α j =
mT

∑
j=1

a′jα
j

where a′j = ai if j ∈ Ki.

I Let R= F2[x]/(Φp) where Φp(x) = (xp−1)/(x−1).

φ :
m−1

∑
i=0

aiβ 2i 7→
mT

∑
j=1

a′jx
j

is a ring homomorphism from F2m to R, and

φ(F2m) = {c1x+ · · ·+ cmTxmT ∈| cj = ck for j,k∈ Ki}.
I φ and its inverse are relatively inexpensive, and

arithmetic in R benefits from form of Φp.
Implementing ECC – 58/110

Ring mapping method...

Naïve approach: map into the ring and then exploit fast
polynomial-based arithmetic.

I There is a factor T expansion, which can be significant.
For F2163, T is at least 4.

I If T is even (always the case if m is odd), then the last
mT/2 coefficients for elements in φ(F2m) are a mirror
reflection of the first mT/2 [WHBG].

I Symmetry property is well-known in the case T = 2
where Gauss periods produce a type 2 optimal normal
basis of the form

{(α + α−1)2i | 0≤ i <m}
and there is an associated basis

{α i + α2m+1−i | 1≤ i ≤m}.

Implementing ECC – 59/110

Gauss periods and mapping for small parameters

Consider F2m for m= 3. T = 4 gives prime p = mT+1 = 13
and the unique subgroup of order T = 4 in Z∗13 is
K = {1,−1,5,−5}. The mapping into

R= F2[x]/(Φp) for Φp(x) = (x13−1)/(x−1)
is given by

φ : a = (a0,a1,a2) 7→ (a0,a1,a1,a2,a0,a2,a2,a0,a2,a1,a1,a0).

I φ(a) is symmetric about p/2 and hence the first
(p−1)/2 coeffs of the ring element suffice to invert φ .

I Fewer coefficients may suffice: in the example, the first
4 (rather than (p−1)/2 = 6) coeffs will allow recovery
of the field element.

I Wu, Hasan, Blake and Gao [ToC 2002] give sample
minima for the number of consecutive R-element coeffs
that permits recovery of the associated field element.

Implementing ECC – 60/110

Algorithm: Multiplication via ring mapping

INPUT: elements a = ∑m−1
i=0 aiβ 2i

and b = ∑m−1
i=0 biβ 2i

in F2m.

OUTPUT: c = ab= ∑m−1
i=0 ciβ 2i

.

1. Calculate

a′ = φ(a) =
p−1

∑
j=1

a′jx
j

in R where a′j = ai if j ∈ Ki . Do similarly for b′.

2. Apply a fast multiplication method for polynomial-based
reps to find half the coeffs of c′ = a′b′ in R.

3. Return c = φ−1(c′).

Implementing ECC – 61/110

Observations on the ring mapping algorithm

1. φ can be optimized with per-field precomp. Each output
coefficient is obtained with a word shift and mask.
Only the first half are calculated in this fashion;
remainder obtained by symmetry.

2. The López-Dahab “comb” method provides fast
multiplication for polynomials and can be adapted to
find only some of the output coefficients.

3. Reduction via

Φp(x) =
xp−1
x−1

= xp−1 + xp−2 + · · ·+ x+ 1

is fast.

4. Only half the output coefficients are required.

5. Cost of applying φ is approximately T/2 times the cost
of φ−1.

Implementing ECC – 62/110

Example: ring mapping method for m= 163

F2163 has a type T = 4 normal basis, and hence the mapping
gives a factor 4 expansion.

I Modified comb mult finds mT/2 = 326coeffs of the
product a′b′. With 32-bit words, field elements require 6
words and ring elements require 21.

I Comb finds words 0, . . . ,10,19, . . . ,30 of the complete
42-word polynomial product.

Small optimization: word 10 is not required since field
elt can be recovered from c′1, . . . ,c

′
309 of product c′.

I The cost of an application of φ is approx 10% of the
total field mult time (φ−1 costs approx half of φ).

Experimentally, times on an Intel Pentium III are a factor 7
slower than field mult for a polynomial basis rep.

Competitive with the best methods with a NB rep.
Implementing ECC – 63/110

Example: ring mapping method for m= 233

F2233 has a type T = 2 normal basis.

As expected, algorithm is faster for m= 233(where 233
coefficients in the ring product are found) than for m= 163
(where 309 coefficients are found).

Method gives the fastest multiplication times for the type 2
case, and is approx a factor 3 slower than mult in a
polynomial basis.

F2m field multiplication (in µs), 800 MHz Intel Pentium III. Other
than L-D, input and output are in NB.

L-D Ning&Yin DHHLLM
m Type comb 2 table 1 table Ring map

162 1 1.3 6.7 5.0∗ 2.7
163 4 1.3 9.6 8.4 10.4
233 2 2.3 11.4 11.7 7.1
∗Uses matrix decomposition.

Implementing ECC – 64/110

Memory consumption

Approximate code and storage requirements (in 32-bit words) for
field multiplication in F2m.

m= 163, T = 4 m= 233, T = 2

Storage type Poly rep Direct Ring map Poly rep Direct Ring map

object code & static data 544 2092 4144 792 2740 3172

automatic (stack) data 108 360 360 146 510 260

Total 652 2452 4504 938 3250 3432

I Code for φ and φ−1 consume a significant portion of the
total mem requirement. For type 2, however, total mem
consumption is comparable to direct method.

I Algorithms for NB reps have significantly larger memory
requirements than the comb method for PB.

I If total mem consumed by field arithmetic is the
measurement of interest, then squaring, square root, and
solving x2 +x = c for NB will likely have significantly smaller
mem requirements than their counterparts for a PB.

Implementing ECC – 65/110

Summary: Normal basis arithmetic

For software implementations, Dahab, H, Hu, Long, López,
and Menezes conclude:

1. Multiplication for normal basis reps significantly faster
than previously reported.

2. Ring mapping method is competitive with best methods
for low-complexity Gaussian normal bases (and
superior for ONB).

3. Not sufficiently fast to help in two cases where NB are
cited as especially desirable: Koblitz curves and point
halving.

Penalty in NB mult appears to be sufficient in to overwhelm
the advantages of fast and elegant operations of trace,
squaring, square root, and solving x2 + x = c.

Implementing ECC – 66/110

References: Normal basis arithmetic

1. I. F. Blake, R. M. Roth, and G. Seroussi. Efficient arithmetic
in GF(2n) through palindromic representation. Technical
Report HPL-98-134, Hewlett-Packard, Aug. 1998. Available
via http://www.hpl.hp.com/techreports/.

2. R. Dahab, D. Hankerson, F. Hu, M. Long, J. López, and A.
Menezes. Software multiplication using normal bases.
Technical Report CACR 2004-12, University of Waterloo,
2004.

3. S. Gao, J. von zur Gathen, D. Panario, and V. Shoup.
Algorithms for exponentiation in finite fields. Journal of
Symbolic Computation, 29:879–889, 2000.

4. P. Ning and Y. Yin. Efficient software implementation for
finite field multiplication in normal basis. Information and
Communications Security 2001, LNCS 2229:177–189.

Implementing ECC – 67/110

http://www.hpl.hp.com/techreports/

References: Normal basis arithmetic...

5. A. Reyhani-Masoleh. Efficient algorithms and architectures
for field multiplication using Gaussian normal bases.
Technical Report CACR 2004-04, University of Waterloo,
Canada, http://www.cacr.math.uwaterlo.ca, 2004.

6. B. Sunar and Ç. K. Koç. An efficient optimal normal basis
type II multiplier. IEEE Transactions on Computers,
50(1):83–87, Jan. 2001.

7. H. Wu, A. Hasan, I. F. Blake, and S. Gao. Finite field
multiplier using redundant representation. IEEE
Transactions on Computers, 51(11):1306–1316, 2002.

Implementing ECC – 68/110

http://www.cacr.math.uwaterlo.ca

Topic IV

Inversion and affine arithmetic

Implementing ECC – 69/110

Inversion revisited

Motivation: optimizations for affine-coordinate arithmetic.

Example. Eisenträger, Lauter, and Montgomery [CT-RSA
2003] speed 2P+ Q by omitting the y-coord in intermediate
P+ Q.

I Proposal is specific to affine coords, and will have
significant number of inversions.

I Related papers by Ciet, Joye, Lauter and Montgomery,
and Dimitrov, Imbert, and Mishra have similar
requirement.

Problem: inversion seems to be expensive compared with
multiplication.

I For the fastest multiplication times, [FHLM ToC 2004]
have inversion cost ≈ 7–9 multiplications in F2m.

I Inversion in prime fields significantly more expensive.

Implementing ECC – 70/110

Inversion in F2m via EEA-like methods

1. Euclidean algorithm.

I Can efficently track size of (some) variables.

I Requires explicit degree calculations.

I Fastest in our tests on Pentium III (where bit scan
instruction aids degree calc).

2. Binary Euclidean algorithm.

I Can efficently track size of (some) variables.

I No explicit degree calculations required.

I Same cost for inversion as for division.

I Slower in our tests on Pentium and SPARC family.

Implementing ECC – 71/110

Inversion in F2m via EEA-like methods

3. Almost inverse algorithm (2-stage method that first finds
a−1zk and then divides by zk).

I Similar to BEA, but can track lengths of all variables.

I Tracking lengths efficiently seems to require code
expansion.

I Variants allow fast 2nd stage even for non-favorable
reduction poly.

I Fastest in our tests on SPARC (and competitive on
Pentium).

Implementing ECC – 72/110

Inversion in F2m via multiplication

Inversion by multiplication uses

a−1 = a2m−2 = (a2m−1−1)2.

I If m is odd and b = a2(m−1)/2−1, then

a2m−1−1 = b ·b2(m−1)/2
.

Hence a2m−1−1 can be computed with one multiplication
and (m−1)/2 squarings once b has been evaluated.

I Recursive procedure finds a−1 in

blog2(m−1)c+ w(m−1)−1

mults, where w gives the number of 1s in binary rep.

For the NIST fields, this is 9–13 mults and m−1 squarings.

If squarings are free, speed is in ballpark of EEA-like
methods. (But squarings are not free in our context.)

Implementing ECC – 73/110

Simultaneous Inversion

“Montgomery’s Trick” to simultaneously find inverses is
based on:

(x,y) 7→ x ·y 7→ 1
xy
, x−1 = y · 1

xy
, y−1 = x · 1

xy

I Useful whenever an inverse costs more than 3 mults.

I Generalization: k inverses have cost I + 3(k−1)M.

Example. For curves over prime fields, 3P+ Q has cost
2I + 4S+ 9M by simultaneous inversion for 2P and P+ Q.

I P = (x1,y1), Q = (x2,y2), 2P = (x3,y3), P+Q = (x4,y4).

I x3 = λ 2
1 −2x1 y3 = (x1−x3)λ1−y1 λ1 = 3x2

1+a
2y1

x4 = λ 2
2 −x1−x2 y4 = (x1−x4)λ2−y1 λ2 = y1−y2

x1−x2

λ1 and λ2 are obtained with a single inversion.

Implementing ECC – 74/110

Simultaneous Inversion

The technique is applied widely. Efficiency (and storage)
increases with the number simultaneous inverses.

Schroeppel and Beaver [2003] propose delaying point
additions in kP to exploit simultaneous inversion.

Simultaneous inversion
on each row


ADD → kP

↗ ↖
ADD ADD
↗↖ ↗↖

P 8P 16P 64P︸ ︷︷ ︸
Saved point doubles for

k = 1+23 +24 +28

1. Calculate all point doubles, retaining those
corresponding to required point additions.

2. Use binary tree to sum, with simultaneous inversion at
each level. For a total of t additions, have log2 t
inversions.

Implementing ECC – 75/110

Simultaneous Inversion...

Attractive when point additions are a significant portion of
the point mult. Examples: Koblitz curves and point halving.

In F2m, cost of affine point additions reduced from 2M + I to
approx 5M. (Addition in mixed coords is approx 8M.)

I First round additions more expensive if conversions
required (e.g., in methods based on point halving).

I Additional storage is approx m/3 points (depends on
rep used for k).

I Adapts to windowing via multiple accumulators.

Schroeppel and Beaver estimate 30% improvement for
methods based on point halving in F2233 (trinomial reduction
poly). Uses estimate H ≈ 1.3M.

Sanity test: suppose H ≈ 2M, I ≈ 8M, and NAF is used.
Their cost estimate of 6M/add gives 25% improvement.

Implementing ECC – 76/110

Simultaneous Inversion...

Comparison of interest: in mixed coords, the additions cost
≈ (8+ 1)M. Improvement is decreased to 20%.

Some side-channel information is eliminated if additions
occur after all the point doubles.

Similar strategy has been applied in parallel processing; e.g.
Mishra and Sarkar [PKC 2004].

Implementing ECC – 77/110

References

1. M. Ciet, M. Joye, K. Lauter and P. Montgomery. Trading
Inversions for Multiplications in Elliptic Curve Cryptography.
Designs, Codes and Cryptography. Cryptology ePrint
Archive http://eprint.iacr.org/2003/257/.

2. V. Dimitrov, L. Imbert, and P. Mishra. Fast elliptic curve point
multiplication using double-base chains. Cryptology ePrint
Archive http://eprint.iacr.org/2005/069.

3. K. Eisenträger, K. Lauter, and P. Montgomery. Fast elliptic
curve arithmetic and improved Weil pairing evaluation. In
Topics in Cryptology—CT-RSA 2003 (LNCS 2612),
343–354, 2003.

4. R. Schroeppel and C. Beaver. Accelerating elliptic curve
calculations with the reciprocal sharing trick. Mathematics of
Public-Key Cryptography (MPKC), University of Illinois at
Chicago, November 2003.

Implementing ECC – 78/110

http://eprint.iacr.org/2003/257/
http://eprint.iacr.org/2005/069

Topic V

Friendlier fields

Implementing ECC – 79/110

Optimal extension fields

Bailey and Paar, CRYPTO ’98 and J. Cryptology 2001.

I Fpm = Fp[x]/(f) for p = 2n±c and f = xm−ω .

I Type 1: c = 1; e.g., m= 6, p = 231−1, f = x6−7.
Type 2: ω = 2; e.g., m= 5, p = 232−5, f = x5−2.

I p can be chosen to fit in a register; Fpm arithmetic can
be performed via ops in Fp.

Attractions

1. Arithmetic more elegant than in Fq for q≈ pm.

2. Fast field inversion compared with Fq.

The bad news

1. Inversion still expensive for small extensions.

2. Fastest mult looks like Fq case.

Implementing ECC – 80/110

Inversion in OEFs (Itoh & Tsujii)

Given A∈ Fpm and r = pm−1
p−1 = pm−1 + · · ·+ p+ 1, find

A−1 = (Ar)−1Ar−1.

Steps

1. Compute Ar−1 = Apm−1+···+p.
2. Ar = Ar−1A∈ Fp.

3. Find c = (Ar)−1 in Fp.

4. A−1 = cAr−1.

Cost

I Steps 1 and 3 appear to be the expensive calculations.

I Step 2 is not a full field multiplication.

I Step 3 is inversion in Fp, which is relatively fast.

I Step 1 can be done with a few field multiplications.

Implementing ECC – 81/110

Direct inversion for m= 2

Let a = a0 + a1x, f (x) = x2−ω , ω ∈ Fp. Want
a−1 = a′0 + a′1x.

I aa−1≡ 1 (mod f) gives(
a0 ωa1

a1 a0

)(
a′0
a′1

)
=
(

1
0

)
.

I Then

a−1 = (a0,−a1)/∆, ∆ = a2
0−ωa2

1.

Cost: I + 2M + 2S (and a mult by ω), all in the subfield.

Implementing ECC – 82/110

Extending OEF: tower fields

Idea: do a sequence of extensions with fi(x) = xt−ωi−1

irreducible over GF(qti−1
) and fi(ωi) = 0.

I Main attraction: faster inversion than in OEF.

I OEF subfield inversion may require 40% of the total
inversion time. Recursion in OTF =⇒ subfield
inversion in Fq is expected to be less expensive.

The bad news

1. Multiplication slightly slower.

2. Unclear if inversion is fast enough to favor affine coords.

3. Analysis is limited. Parameters chosen (on ARM) may
favor method.

4. Security of curves over OEFs and OTFs needs more
analysis.

Baktir and Sunar [IEEE ToC 2004]. Implementing ECC – 83/110

Processor Adequate Finite Fields

Avanzi and Mihăilescu [SAC 2003] discuss PAFFs.

I Similar to OEF, but p may be any prime subject to size
restriction (size chosen to cooperate with hardware).

I Use “partial reduction” to reduce cost. Redundant rep.

Redundant reps and partial reduction is a widely-used
technique.

1. Bernstein’s fast floating-point implementations for Fp.

2. Fields with parameters not-of-special-form.
I Gura, Eberle, and Chang Shantz, for F2m.
I Yanik, Savaş, and Koç, for Fp.

Techniques have some application for special-form
parameters.

Implementing ECC – 84/110

Move to a friendlier ring

Idea: move to a ring where where arithmetic is more
pleasant.

Specialized case with fields having a type 1 ONB is
well-known.

I Map field elts to F2[x]/(f) where f =
xm+1−1

x−1
.

I Do most arithmetic modulo xm+1−1.

I Limitations: must have m+ 1 prime. Type 1 ONBs
relatively rare.

Technique generalizes to Gaussian bases of type T, but with
factor T expansion.

Implementing ECC – 85/110

Move to a friendlier ring

Trinomials are desirable in reduction, solving x2 + x = c in
point halving, and square root.

Doche gives “redundant trinomials” for F2m where there is no
irreducible trinomial.

1. Find trinomial xn + xk + 1 that has an irreducible factor
of degree m.

Example: No irreducible trinomial for m= 8.
Trinomial x11+x5 +1 has irreducible factor
x8 +x6 +x5 +x4 +x2 +x+1.

2. Do most arithmetic in the larger ring.

3. Expansion is ≤ 10 in 95% of cases. For 32-bit words,
expansion does not require more words in 86% of
cases.

Implementing ECC – 86/110

Move to a friendlier ring...

4. Optimal redundant trinomials have degree divisible by
32.

Example: x197+27+x103+1 has irreducible factor
of degree 197.

Faster, even though extension is usually larger. Optimal
quadrinomials more common.

5. 20% improvement for reductions and squarings. Less
than 5% for multiplications.

6. Inversion 15% slower.

Implementation was with NTL. More experimental data
desirable.

Implementing ECC – 87/110

Hyperelliptic curves

Hyperelliptic curve of genus g over Fq:

v2 + h(u)v = f (u)
h, f ∈ Fq[u], degf = 2g+ 1, degh≤ g.

I g = 1 =⇒ elliptic curve.

I Known attacks =⇒ g≤ 4 (or g≤ 3) of interest.

I Arithmetic is in smaller fields for g∈ {2,3}, but curve
operations are more complicated.

I Significant improvements in explicit formulae by Lange,
Pezl, Wollinger, Guarjardo, Paar.

Implementing ECC – 88/110

Hyperelliptic vs elliptic curves

1. Avanzi [CHES 2004]: roughly 15% penalty with genus 2
curves over prime fields compared with EC.

Limitations: “not interested in...prime moduli of special
form” but this is a comparison of interest and may favor
elliptic curves.

2. Lange and Stevens [SAC 2004]: genus 2 curves with
degh = 1 are competitive or faster than EC for curves
over binary fields.

Limitations: implementation was with NTL. Affine
coords only.

Implementing ECC – 89/110

References

1. R. Avanzi. Aspects of hyperelliptic curves over large prime
fields in software implementations. CHES 2004, LNCS
3156:148–162.

2. Avanzi and P. Mihăilescu. Generic efficient arithmetic
algorithms for PAFFs (Processor Adequate Finite Fields)
and related algebraic structures. SAC 2003, LNCS
3006:320-334, 2004.

3. S. Baktir and B. Sunar. Optimal tower fields. IEEE
Transactions on Computers 53:1231–1243, 2004.

4. C. Doche. Redundant trinomials for finite fields of
characteristic 2. Cryptology ePrint Archive
http://eprint.iacr.org/2004/055/.

Implementing ECC – 90/110

http://eprint.iacr.org/2004/055/

References...

5. T. Kobayashi, H. Morita, K. Kobayashi, F. Hoshino. Fast
elliptic curve algorithm combining frobenius map and table
reference to adapt to higher characteristic. EUROCRYPT
’99, LNCS 1592:176-189. [Koblitz-like speedups. Downside:
curve is over large subfield.]

6. V Müller. Efficient point multiplication for elliptic curves over
special optimal extension fields. Public-Key Cryptography
and Computational Number Theory, pages 197–207, de
Gruyter, 2001. [Combines the ideas of GLV and OEF.]

7. T. Yanik, E. Savaş, and Ç. Koç. Incomplete reduction in
modular arithmetic. IEE Proceedings: Computers and
Digital Techniques, 149(2):46-52, March 2002.

Implementing ECC – 91/110

Topic VI

Using special-purpose hardware

Implementing ECC – 92/110

Case study: the Intel x86 (Pentium) family

Outline

1. Declining performance of integer arithmetic with
general-purpose registers.

2. The floating-point approach.

3. “Multimedia” single-instruction multiple-data (SIMD)
hardware.

4. Wish list: special instructions.

Implementing ECC – 93/110

Intel IA-32 processors

Processor Year Selected features

386 1985 First IA-32 family processor with 32-bit operations and par-
allel stages.

486 1989 5 pipelined stages in the 486; processor is capable of one
instruction per clock cycle.

Pentium

Pentium MMX

1993

1997

Dual-pipeline: optimal pairing gives two instructions per
clock cycle. MMX added eight special-purpose 64-bit “mul-
timedia” registers, supporting operations on vectors of 1, 2,
4, or 8-byte integers.

Pentium Pro

Pentium II

Celeron

Pentium III

1995

1997

1998

1999

P6 architecture has more sophisticated pipelining and out-
of-order execution. Up to 3 µ-ops executed per cycle. Im-
proved branch prediction, but misprediction penalty much
larger than on Pentium. Integer multiplication faster. SSE
extensions on P-III have 128-bit registers supporting ops on
vectors of single-precision floating-point values.

Pentium 4 2000 NetBurst architecture runs at significantly higher clock
speeds, but many instructions have worse cycle counts
than P6 family processors. SSE2 extensions have double-
precision floating-point and 128-bit packed integer data
types.

Implementing ECC – 94/110

Multiplication on the Pentium

The good news

I Can do integer multiplication 32×32→ 64 bits.

I Pentium II/III have faster multiplication than original
Pentium and MMX.

The bad news

I Must use a and d registers for the mult of interest.

I Multiplication on Pentium 4 with general-purpose
registers is slower than on earlier processors.

I Pentium II/III have better branch prediction than the
original Pentium, but mispredictions are more
expensive.

Implementing ECC – 95/110

Instruction latency/throughput

Latency/throughput for Pentium II/III vs Pentium 4

Instruction Pentium II/III Pentium 4

Integer add, xor,... 1 / 1 .5 / .5

Integer add, sub with carry 1 / 1 6–8 / 2–3

Integer multiplication 4 / 1 14–18 / 3–5

Floating-point multiply 5 / 2 7 / 2

MMX ALU 1 / 1 2 / 2

MMX multiply 3 / 1 8 / 2

I Latency: number of clock cycles required before the
result of an operation may be used.

I Throughput: number of cycles which must pass before
the instruction may be executed again.

Small latency and small throughput are desirable.
Throughput can be significantly less than latency.

Implementing ECC – 96/110

Faster multiplication: floating-point

Idea: use floating-point hardware to implement fast integer
arithmetic.

I Potential for broad applicability: DEC Alpha, Intel
Pentium, Sun SPARC, AMD Athlon.

I IEEE double-precision floating-point format

s e (11-bit exponent) f (52-bit fraction)

63 62 52 51 0

represents numbers z= (−1)s×2e−1023×1.f .

I Normalization of the significand 1.f increases effective
precision to 53 bits.

I 80-bit double-extended format.

I Pentium has 8 floating-point registers. Length of the
significand is selected in a control register.

Implementing ECC – 97/110

Floating-point

Some good news

I Floating-point addition operates on more bits than
addition with integer instructions on 32-bit hardware.

I More registers and not restricted to specific registers.
Can do useful things during the latency period.

Some bad news

I Expensive to move between integer and floating-point
formats.

I Bit operations which are convenient in integer format
(e.g., extraction of specific bits, division by 2) are
clumsy on values in floating point registers.

I Redundant rep =⇒ tests for equality are more
expensive.

Implementing ECC – 98/110

Scalar multiplication for P-224

Bernstein: minimize conversions to/from floating point.

I P-224: NIST curve over Fp for prime p = 2224−296+1.

I Performance improvements are in field arithmetic (and
in the organization of field ops in point doubling and
addition).

I Field multiplication will require more than 64
(floating-point) multiplications, compared with 49 in the
classical method.

I On the positive side, more registers are available, mult
can occur on any register, and products may be directly
accumulated in a register without handling carry.

Implementing ECC – 99/110

P-224 field multiplication

Multiplication in Fp224 1.7 GHz P4
Classical integer 0.62
Karatsuba-Ofman 0.82
Floating-point 0.20a

aExcludes canonical form conversions.The good news

1. Wide applicability. No coding in assembly.

2. Excluding conversions, can do c = ab (to 8 FP values
of roughly 28 bits) very fast.

The bad news

1. No assembly required, but have to manage scheduling
and register allocation.

2. Can’t allow compiler to unexpectedly spill 80-bit
extended-double to 64-bit doubles. Alignment.

3. Conversion to canonical form is expensive, so must
commit to FP across curve operations.

4. Algorithm verification. Implementing ECC – 100/110

P-224 Curve arithmetic

Bernstein uses a width-4 window method (without sliding) for
kP.

I Expected 3+ (15/16)(224/4) point additions.

I Scalar multiplication timings:

Cycles for kP

Method Pentium III Pentium 4

general-purpose registers 1,200,000 2,700,000

floating-point registers 730,000 830,000

Reference implementation processesk = ∑55
i=0ki24i where−8 ≤

ki < 8. Precomp storesiP in Chudnovsky coords(X:Y:Z:Z2:Z3) for

i ∈ [−8,8).

Implementing ECC – 101/110

P-224 Curve arithmetic...

I Most of the improvement may be obtained by
scheduling only field multiplication and squaring.

I Bernstein organized point arithmetic so that operations
could be efficiently folded into field multiplication.

• Point doubling (x2,y2,z2) = 2(x1,y1,z1) is

δ←z2
1, γ←y2

1 β←x1γ , α←3(x1−δ)(x1 + δ)

x2←α2−8β , z2←(y1 +z1)2− γ−δ , y2←α(4β −x2)−8γ2

• 3 field mults, 5 squarings, 7 reductions.

I Expensive conversion to canonical form done only at
the end of scalar multiplication.

Implementing ECC – 102/110

Single-instruction multiple-data (SIMD)

Perform operations in parallel on vectors. All Intel Pentiums
except original and Pentium Pro.

I Initially “MMX Technology” for multimedia.

Extension Registers Features added

MMX (PII) 8 64-bit vector ops on 1,2,4,8 byte integers;
share space with floating-point reg-
isters

SSE (PIII) 8 128-bit vector ops on single-precision
floating-point

SSE2 (P4) 8 128-bit vector ops on double-precision float-
ing point and 64-bit integers

I MMX suitable for binary field multiplication and
inversion.

I SSE2 provides integer alternative to floating-point
multiplication.

Implementing ECC – 103/110

Single-instruction multiple-data (SIMD)

I Advanced Micro Devices (AMD) K6 processor has
MMX.

I Sun has Visual Instruction Set (VIS).

Basic idea applied to Intel and AMD processors:

I Implement fast 64-bit operations on primarily 32-bit
machines.

I Gives more registers on register-poor machine.

I Integer multiplication (SSE2) can use 8 registers
(32×32 multiply with general-purpose registers has
output in a and d).

I SSE2 integer multiply has latency 8 and throughput 2.
Can do useful things in the latency period.

Implementing ECC – 104/110

SIMD integer multiplication methods

Notation: integers a = ∑aiBi for some B = 2w (e.g., w = 28
or w = 32). Want c = ab.

1. Operand scanning approach.

a0 a1 a2

b2 a0b2 · · · a1b2 · · · a2b2 → c+ ∑aib2Bi+2

b1 a0b1 · · · a1b1 · · · a2b1 → c+ ∑aib1Bi+1

b0 a0b0 · · · a1b0 · · · a2b0 → c+ ∑aib0Bi+0

Advantages

I Control code is simple.

I Can use full 32-bit multiplications.

Downsides

I More memory accesses if few registers available.

I Must shift after each multiplication.
Implementing ECC – 105/110

SIMD integer multiplication methods

2. Product scanning method.
a0 a1 a2

b2 a0b2 a1b2 a2b2
. . .

. . . ↘
b1 a0b1 a1b1 a2b1 ∑

i+ j=4

aibjB4

. . .
. . . ↘

b0 a0b0 a1b0 a2b0 ∑
i+ j=3

aibjB3

↘ ↘ ↘
∑

i+ j=0

aibjB0 ∑
i+ j=1

aibjB1 ∑
i+ j=2

aibjB2

Advantages

I Possibly fewer memory accesses.

I Less shifting.

Downsides

I Control code more complicated (unless fully unrolled).

I To avoid carry, take w< 32. “Wastes” part of the
multiplier. Implementing ECC – 106/110

SIMD integer multiplication methods...

1. GNU mp uses operand scanning.

2. Moore uses vector ops in 128-bit SSE2 to compute two
products (with w = 29) simultaneously. Roughly
operand scanning, but carry is handled in 2nd stage.

3. To avoid the requirement w< 32 in product scanning,
use shuffle instruction to split 64-bit product uv:

←− 64 bits −→ ←− 64 bits −→
0· · ·0 0· · ·0 uvhigh uvlow

↓ pshufd

0· · ·0 uvhigh 0· · ·0 uvlow

and then accumulate. Downside: have to shuffle on
every mult.

Experiments suggest product scanning with scalar ops wins
(even though input must be split and output reassembled).

Implementing ECC – 107/110

Multiplication with SSE2 integer ops

Multiplication in Fp224 Pentium 4 (1.7 GHz)

Classical integer (product scanning) 0.62

Karatsuba-Ofman (depth 2) 0.82

SIMD (SSE2; product scanning) 0.27

Floating-point 0.20a

aExcludes conversion to/from canonical form.

I Floating-point includes partial reduction to 8
floating-point values (each roughly 28 bits); does not
include expensive conversion to canonical reduced
form. Other times include reduction.

I Classical and Karatsuba would benefit from additional
tuning specific to Pentium 4; regardless, both will be
inferior to SIMD and floating-point.

I SIMD does not require the commitment of the
floating-point approach.

Implementing ECC – 108/110

Summary: special-purpose hardware

1. Designs such as Pentium 4 and UltraSPARC have slow
integer mult with general-purpose registers.

2. Common MMX subset suitable for binary field
arithmetic. Relatively easy to code.

3. Floating-point hardware common on workstations
speeds prime field arithmetic. Must commit to coding
across curve operations.

4. Integer SSE2 extensions on Pentium 4 easy to insert
locally, but not as fast as floating-point approach. Not
available with Pentium II/III.

Wish list: Großschädl and Savaş [CHES 2004] propose
instruction set extensions to speed field ops.

Amusements: use graphics card as a crypto co-processor
[CT-RSA 2005].

Implementing ECC – 109/110

References

1. D. Bernstein. A software implementation of NIST P-224.
Presentation at the 5th Workshop on Elliptic Curve
Cryptography (ECC 2001), University of Waterloo, October
29-31, 2001. Slides available from http://cr.yp.to/talks.html

2. J. Großschädl and E. Savaş. Instruction set extensions for
fast arithmetic in finite fields GF(p) and GF(2m). CHES
2004, LNCS 3156:133–147.

3. D. Hankerson, A. Menezes, and S. Vanstone. Guide to
Elliptic Curve Cryptography. Springer-Verlag, 2004.

4. S. Moore. Using Streaming SIMD Extensions (SSE2) to
Perform Big Multiplications. Application Note AP-941, Intel
Corporation, Version 2.0, Order Number 248606-001, 2000.

Implementing ECC – 110/110

http://cr.yp.to/talks.html

	
	Overview
	Focus: higher-performance processors
	Optimizing ECC
	Optimizing ECC...
	Context: Protocols such as ECDSA
	ECDSA Signature Generation
	ECDSA Verification
	Deployment Notes...
	Deployment Notes...
	Deployment Notes...
	Topic: Prerequisites
	Elliptic curve groups
	Chord-and-tangent rule
	Point Arithmetic
	Calculating kP
	Calculating kP...
	Width-w NAF
	Width-w NAF...
	Montgomery's method
	Montgomery's method...
	Obtaining the y-coordinate
	Projective coordinates
	Projective coordinates...
	Projective coordinates...
	Point multiplication costs
	Appendix: NIST curves over binary fields
	Appendix: NIST curves over prime fields
	Appendix: Basic facts for curves over prime fields
	Topic: Endomorphism methods
	Reducing the cost of doubling
	Replace doublings: efficient endomorphisms
	Koblitz curves
	Strategy for kP on a Koblitz curve
	Strategy...
	Operation counts
	Using efficient endomorphisms
	Using efficient endomorphisms...
	A very special case
	Point halving for curves over binary fields
	Point halving...
	Point halving...
	Calculating kP by halve-and-add
	Summary: Efficient endomorphisms
	Summary: Efficient endomorphisms...
	Appendix: Operation count
	Appendix: Timings (800,MHz Intel Pentium III)
	Appendix: Timings...
	Topic: Normal Basis Arithmetic
	Normal bases in characteristic 2
	NB Multiplication
	Gaussian normal bases
	Gaussian normal bases...
	Vector multiplication
	Vector multiplication...
	Vector multiplication...
	Ring mapping method
	Ring mapping method...
	Ring mapping method...
	Gauss periods and mapping for small parameters
	Algorithm: Multiplication via ring mapping
	Observations on the ring mapping algorithm
	Example: ring mapping method for $m=163$
	Example: ring mapping method for $m=233$
	Memory consumption
	Summary: Normal basis arithmetic
	References: Normal basis arithmetic
	References: Normal basis arithmetic...
	Topic: Inversion and affine arithmetic
	Inversion revisited
	Inversion in $F [2^m]$ via EEA-like methods
	Inversion in $F [2^m]$ via EEA-like methods
	Inversion in $F [2^m]$ via multiplication
	Simultaneous Inversion
	Simultaneous Inversion
	Simultaneous Inversion...
	Simultaneous Inversion...
	References
	Topic: Friendlier fields
	Optimal extension fields
	Inversion in OEFs (Itoh & Tsujii)
	Direct inversion for $m=2$
	Extending OEF: tower fields
	Processor Adequate Finite Fields
	Move to a friendlier ring
	Move to a friendlier ring
	Move to a friendlier ring...
	Hyperelliptic curves
	Hyperelliptic vs elliptic curves
	References
	References...
	Topic: Using special-purpose hardware
	Case study: the Intel x86 (Pentium)
family
	Intel IA-32 processors
	Multiplication on the Pentium
	Instruction latency/throughput
	Faster multiplication: floating-point
	Floating-point
	Scalar multiplication for P-224
	P-224 field multiplication
	P-224 Curve arithmetic
	P-224 Curve arithmetic...
	Single-instruction multiple-data (SIMD)
	Single-instruction multiple-data (SIMD)
	SIMD integer multiplication methods
	SIMD integer multiplication methods
	SIMD integer multiplication methods...
	Multiplication with SSE2 integer ops
	Summary: special-purpose hardware
	References

