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CHAPTER 16

Elliptic Curves

In the mid-1980s, Miller and Koblitz introduced elliptic curves into cryp-
tography, and Lenstra showed how to use elliptic curves to factor integers.
Since that time, elliptic curves have played an increasingly important role in
many cryptographic situations. One of their advantages is that they seem
to offer a level of security comparable to classical cryptosystems that use
much larger key sizes. For example, it is estimated in [Blake et al.] that
certain conventional systems with a 4096-bit key size can be replaced by
313-bit elliptic curve systems. Using much shorter numbers can represent a
considerable savings in hardware implementations.

In this chapter, we present some of the highlights. For more details on
elliptic curves and their cryptologic uses, see [Blake et al.], [Hankerson et
al.], or [Washington]. For a list of elliptic curves recommended by NIST for
cryptographic uses, see [FIPS 186-2].

16.1 The Addition Law
An elliptic curve E is the graph of an equation
E: y¥=z3+az’+bz+c,
where a, b, ¢ are in whatever is the appropriate set (rational numbers, real

numbers, integers mod p, etc.). In other words, let K be the rational num-
bers, the real numbers, or the integers mod a prime p (or, for those who

347
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know what this means, any field of characteristic not 2). Then we assume
a,b,c € K and take F to be

{(z,9) | z,y € K,y =2+ az® + bz + c}.

As will be discussed below, it is also convenient to include a point (00, 00),
which often will be denoted simply by oc.

Let’s consider the case of real numbers first, since this case allows us
to work with pictures. The graph F has two possible forms, depending on
whether the cubic polynomial has one real root or three real roots. For
example, the graphs of 32 = z(z + 1)(z — 1) and y? = 23 + 73 are the
following:

-20]

y*=z(z+1)(z~1) y? =3+ 73

The case of two components (for example, y2 = z(z + 1)(z — 1)) occurs
when the cubic polynomial has 3 real roots. The case of one component (for
example, y? = z3 + 73) occurs when the cubic polynomial has only one real
root.

For technical reasons that will become clear later, we also include a-
“point at infinity,” denoted oo, which is most easily regarded as sitting at
the top of the y-axis. It can be treated rigorously in the context of projective
geometry (see [Washington|), but this intuitive notion suffices for what we
need. The bottom of the y-axis is identified with the top, so oo also sits at
the bottom of the y-axis.

Now let’s look at elliptic curves mod p, where p is a prime. For example,
let E be given by
y¥?=234+2z -1 (mod 5).
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We can list the points on E by letting z run through the values 0,1,2,3,4
and solving for y:

(0,2),(0,3),(2,1),(2,4), (4,1),(4,4), 0.

Note that we again include a point co.
Elliptic curves mod p are finite sets of points. It is these elliptic curves
that are useful in cryptography.

Technical point: We assume that the cubic polynomial z3 4+ az? + bz + ¢
has no multiple roots. This means we exclude, for example, the graph of
y? = (z — 1)%(z + 2). Such curves will be discussed in Section 16.3. '

Technical point: For most situations, equations of the form y? = 23 +
bz + ¢ suffice for elliptic curves. In fact, in situations where we can divide by
3, a change of variables changes an equation y% = 23 + az? 4 bz + ¢ into an
equation of the form y? = 2® + ¥z +¢’. See Exercise 1. However, sometimes
it is necessary to consider elliptic curves given by equations of the form

¥ + a1zy + agy = T° + agx” + 447 + ag,

where ai,...,ag are constants. If we are working mod p, where p > 3 is
prime, or if we are working with real, rational, or complex numbers, then
simple changes of variables transform the present equation into the form
y? = 23 4+ bz + c¢. However, if we are working mod 2 or mod 3, or with a
finite field of characteristic 2 or 3 (that is, 1+1 =0or 1+ 1"+ 1 = 0),
then we need to use the more general form. Elliptic curves over fields of
characteristic 2 will be mentioned briefly in Section 16.4.

Historical point: Elliptic curves are not ellipses. They received their
name from their relation to elliptic integrals such as

22 zdx

/22 dz
5 VI3 +br+c an VId+br+ec

that arise in the computation of the arc length of ellipses.

and

The main reason elliptic curves are important is that we can use any two
points on the curve to produce a third point on the curve. Given points Py
and P, on F, we obtain a third point P3 on E as follows (see Figure 16.1):
Draw the line L through P; and P, (if P, = P, take the tangent line to F
at Pp). The line L intersects E in a third point ). Reflect Q) through the
z-axis (i.e., change y to —y) to get Ps. Define a law of addition on E by

P+ P,=P;.
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Py

o

Py

Figure 16.1: Adding Points on an Elliptic Curve.

Note that this is not the same as adding points in the plane.

Example. Suppose E is defined by y? = z3 4 73. Let P, = (2,9) and
P, = (3,10). The line L through P; and P, is

y=z+7.

Substituting into the equation for E yields
(x+17)?%=2%+73,
which yields 2® — 22 — 14z 4 24 = 0. Since L intersects E in P, .‘_a'nd Py, we
already know two roots, namely x = 2 and x = 3. Moreover, the sum of the
three roots is minus the coefficient of x2 (Exercise 1) and therefore equals
1. If 7 is the third root, then
243+z=1,

so the third point of intersection has £ = —4. Since y = z + 7, we have
y = 3, and Q = (—4, 3). Reflect across the z-axis to obtain

(2,0) + (3,10) = P3 = (—4,-3).
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Now suppose we want to add Ps to itself. The slope of the tangent line
to E at Pj; is obtained by implicitly differentiating the equation for E:

d 2
2y dy = 3z dz, so Y _ 32 = -§,
dz 2y
where we have substituted (z,y) = (—4, —3) from Ps. In this case, the line
L is y = —8(z + 4) — 3. Substituting into the equation for E yields

(—8(z +4) - 3)% =2*+ 73,

hence 73 — (—8)2z% + - -- = 0. The sum of the three roots is 64 (= minus the
coefficient of z?). Because the line L is tangent to E, it follows that z = —4
is a double root. Therefore,

(—4) + (—4) + z = 64,
so the third root is z = 72. The corresponding value of y (use the equation
of L) is —611. Changing y to —y yields
P; + P3 = (72,611). |

What happens if we try to compute P + oo? We make the convention
that the lines through oo are vertical. Therefore, the line through P = (z,y)
and oo intersects F in P and also in (z, —y). When we reflect (z, —y) across
the z-axis, we get back P = (z,y). Therefore,

P+ =P

We can also subtract points. First, observe that the line through (z,y)
and (z, —y) is vertical, so the third point of intersection with F is co. The
reflection across the z-axis is still co (that’s what we meant when we said
oo sits at the top and at the bottom of the y-axis). Therefore,

(x,y) + (z,—y) =

Since oo plays the role of an additive identity (in the same way that 0 is the
identity for addition), we define :

—(z,9) = (=, —y)-

To subtract points P — @, simply add P and —Q.
Another way to express the addition law is to say that

P+Q+ R=0c0 <> P,Q,R are collinear.

(see Exercise 10).
For computations, we can ignore the geometrical interpretation and work
only with formulas, which are as follows:
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Addition Law. Let E be given by y? = x3 + bz + ¢ and let
P =(21,%2), P2=(22,%2)-

Then

P+ Py = P3 = (z3,93),
where

T3 = m?—1I;—Zo

y3 = m(z1—x3) —y1
and

m— { (2—y)/(w2—z1) FP#P
(Bz3+0)/(2) f P =P
If the slope m is infinite, then P3 = co. There is one additional law: co+P =
P for all points P.

It can be shown that the addition law is associative:
(P+@)+R=P+(Q+R).

It is also commutative:

P+Q=Q+P
When adding several points, it therefore doesn’t matter in what order the
points are added nor how they are grouped together. In technical terms, we
have found that the points of E form an abelian group. The point oo is the
identity element of this group.

16.2 Elliptic Curves Mod p

If p is a prime, we can work with elliptic curves mod p using the aforemen-
tioned ideas. For example, consider

E:y*=2*4+42+4 (mod5).

The points on F are the pairs (z,y) mod 5 that satisfy the equation, along
with the point at infinity. These can be listed as follows. The possibilities
for z mod 5 are 0, 1, 2, 3, 4. Substitute each of these into the equation and
find the values of y that solve the equation:

r=0=1y>=4 = y=2,3 (mod5)
z=1=—=1y’=9=4 =—=y=2,3 (mod5)
r=2=—=19=20=0 = y=0 (mod5)
r=3=1y2=43=3 = no solutions

r=4=—y*=84=4 = y=2,3 (mod5)
T =00 =>Yy=o00.
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The points on E are (0,2), (0, 3), (1,2),(1, 3), (2,0), (4,2), (4, 3), (00, o0).

The addition of points on an elliptic curve mod p is done via the same
formulas as given previously, except that a rational number a/b must be
treated as ab™!, where 516 =1 (mod p). This requires that ged(b,p) = 1.

More generally, it is possible to develop a theory of elliptic curves mod
n for any integer n. In this case, when we encounter a fraction a/b, we need
to have ged(b,n) = 1. The situations where this fails form the key to using
elliptic curves for factorization, as we’ll see in Section 16.3. There are various
technical problems in the general theory that arise when 1 < ged(b,n) < n,
but the method to overcome these will not be needed in the following. For
details on how to treat this case, see [Washington]. For our purposes, when
we encounter an elliptic curve mod a composite n, we can pretend n is prime.
If something goes wrong, we usually obtain useful information about n, for
example its factorization.

Example. Let’s compute (1,2) + (4,3) on the curve just considered. The

slope is
=3=2_, (mod 5)
m=—7 = m .

Therefore,

t3=m?—x1—22=22-1-4=4 (mod 5)
ys=m(z1 —x3) —y1 =2(1-4) —2=2 (mod 5).

This means that
(1,2) + (4,3) = (4,2). "

Example. Here is a somewhat larger example. Let n = 2773. Let
Eiy’=4®+4z+4 (mod 2773), and P = (1,3).

Let’s compute 2P = P + P. To get the slope of the tangent 1ine,-'"’vs}é differ-
entiate implicitly and evaluate at (1, 3):
dy 7
2ydy = (32 +4)dz = = = .
ydy =(@z" +4)do = -~ = =
But we are working mod 2773. Using the extended Euclidean algorithm (see
Section 3.2), we find that 2311-6 = 1 (mod 2773), so we can replace 1/6 by
2311. Therefore,

m =

=7x2311=2312 (mod 2773).

S~
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The formulas yield'

23=23122-1-1=1771 (mod 2773)
y3 =2312(1 — 1771) —3 =705 (mod 2773).

The final answer is
2P = P+ P =(1771,705).

Now that we’re done with the example, we mention that 2773 is not prime.
When we try to calculate 3P in Section 16.3, we’ll obtain the factorization
of 2773. |

16.2.1 Number of Points Mod p

Let E: y? = 23+ bz + ¢ (mod p) be an elliptic curve, where p > 5 is prime.
We can list the points on E by letting x = 0,1,...,p — 1 and seeing when
x3 + bz + ¢ is a square mod p. Since half of the nonzero numbers are squares
mod p, we expect that 22 + bz + ¢ will be a square approximately half the
time. When it is a nonzero square, there are two square roots: y and —y.
Therefore, approximately half the time we get two values of ¥ and half the
time we get no y. Therefore, we expect around p points. Including the point
00, we expect a total of approximately p + 1 points. In the 1930s, H. Hasse
made this estimate more precise.

Hasse’s Theorem. Suppose E (mod p) has N points. Then

IN —p—1] < 2/p.

The proof of this theorem is well beyond the scope of this book (for
a proof, see [Washington|). It can also be shown that whenever N and p
satisfy the inequality of the theorem, there is an elliptic curve F mod p with
exactly N points.

If p is large, say around 10%, it is infeasible to count the points on
an elliptic curve by listing them. More sophisticated algorithms have been
developed by Schoof, Atkin, Elkies, and others to deal with this problem.

16.2.2 Discrete Logarithms on Elliptic Curves

Recall the classical discrete logarithm problem: We know that z = g*
(mod'p) for some k, and we want to find k. There is an elliptic curve
version: Suppose we have points A, B on an elliptic curve F and we know
that B = kA(= A+ A+ --- + A) for some integer k. We want to find k.
This might not look like a logarithm problem, but it is clearly the analog of
the classical discrete logarithm problem. Therefore, it is called the discrete
logarithm problem for elliptic curves.
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There is no good general attack on the discrete logarithm problem for
elliptic curves. There is an analog of the Pohlig-Hellman attack that works
in some situations. Let £ be an elliptic curve mod a prime p and let n
be the smallest integer such that nA = co. If n has only small prime
factors, then it is possible to calculate the discrete logarithm k& mod the
prime powers dividing n and then use the Chinese remainder theorem to
find k (see Exercise 15). The Pohlig-Hellman attack can be thwarted by
choosing E and A so that n has a large prime factor.

There is no replacement for the index calculus attack described in Section
7.2. This is because there is no good analog of “small.” You might try to use
points with small coordinates in place of the “small primes,” but this doesn’t
work. When you factor a number by dividing off the prime factors one by
one, the quotients get smaller and smaller until you finish. On an elliptic
curve, you could have a point with fairly small coordinates, subtract off a
small point, and end up with a point with large coordinates (see Computer
Problem 5). So there is no good way to know when you are making progress
toward expressing a point in terms of the factor base of small points.

The Baby Step, Giant Step attack on discrete logarithms works for ellip-
tic curves (Exercise 9), although it requires too much memory to be practical
in most situations. For other attacks, see [Blake et al.] and [Washington].

16.2.3 Representing Plaintext

In most cryptographic systems, we must have a method for mapping our
original message into a numerical value upon which we can perform math-
ematical operations. In order to use elliptic curves, we need a method for
mapping a message onto a point on an elliptic curve. Elliptic curve cryp-
tosystems then use elliptic curve operations on that point to yield a new
point that will serve as the ciphertext.

The problem of encoding plaintext messages as points on an elliptic curve
is not as simple as it was in the conventional case. In particular, there is no
known polynomial time, deterministic algorithm for writing down points on
an arbitrary elliptic curve E (mod p). However, there are fast probabilistic
methods for finding points, and these can be used for encoding messages.
These methods have the property that with small probability they will fail
to produce a point. By appropriately choosing parameters, this probability
can be made arbitrarily small, say on the order of 1/2%.

Here is one method, due to Koblitz. The idea is the following. Let
E :y? = 2% + bz + ¢ (mod p) be the elliptic curve. The message m (already
represented as a number) will be embedded in the z-coordinate of a point.
However, the probability is only about 1/2 that m3 +bm+c is a square mod
p. Therefore, we adjoin a few bits at the end of m and adjust them until we
get a number z such that 22 + bz + c is a square mod p.




356 CHAPTER 16. ELLIPTIC CURVES

More precisely, let K be a large integer so that a failure rate of 1/2%
is acceptable when trying to encode a message as a point. Assume that m
satisfies (m + 1)K < p. The message m will be represented by a number
z=mK+j,where0 < j < K. For j=0,1,...,K —1, compute 23+ bxr +¢
and try to calculate the square root of 3 + bz + ¢ (mod p). For example, if
p =3 (mod 4), the method of Section 3.9 can be used. If there is a square
root y, then we take P, = (z,y); otherwise, we increment j by one and try
again with the new z. We repeat this until either we find a square root or
j = K. If § ever equals K, then we fail to map a message to a point. Since
z3 + bz + ¢ is a square approximately half of the time, we have about a 1/2%
chance of failure.

In order to recover the message from the point P, = (z,y) we simply
calculate m by

— [/K],

where [z/ K| denotes the greatest integer less than or equal to z/K.

Example. Let p = 179 and suppose that our elliptic curve is y? = 23+ 2z +
7. If we are satisfied with a failure rate of 1/210, then we may take K = 10.
Since we need mK + K < 179, we need 0 < m < 16. Suppose our message
is m = 5. We consider z of the form mK + j = 50+ j. The possible choices
for x are 50, 51,...,59. For x = 51 we get z3+2z+7 = 121 (mod 179), and
112 = 121 (mod 179). Thus, we represent the message m = 5 by the point
P, = (51,11). The message m can be recovered by m = [51/10] =5. K

16.3 Factoring with Elliptic Curves

Suppose n = pq is a number we wish to factor. Choose a random elliptic
curve mod n and a point on the curve. In practice, one chooses several
(around 14 for numbers around 50 digits; more for larger integers) curves
with points and runs the algorithm in parallel.

How do we choose the curve? First, choose a pomt P and a. coefﬁc1ent
b. Then choose ¢ so that P lies on the curve y? = 23 + bx + ¢. This is much
more efficient than choosing b and ¢ and then trying to find a point.

For example, let n = 2773. Take P = (1,3) and b = 4. Since we want
32 =13 +4-1+ ¢, we take c = 4. Therefore, our curve is

E: y*=z*44z+4 (mod 2773).

We calculated 2P = (1771,705) in a previous example. Note that dur-
ing the calculation, we needed to find 6! (mod 2773). This required that
ged(6,2773) = 1 and used the extended Euclidean algorithm, which was
essentially a ged calculation.
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Now let’s calculate 3P = 2P 4+ P. The line through the points 2P =
(1771,705) and P = (1, 3) has slope 702/1770. When we try to invert 1770
mod 2773, we find that ged(1770,2773) = 59, so we cannot do this. So what
do we do? Our original goal was to factor 2773, so we don’t need to do
anything more. We have found the factor 59, which yields the factorization
2773 =59 -47.

Here’s what happened. Using the Chinese remainder theorem, we can
regard FE as a pair of elliptic curves, one mod 59 and the other mod 47.
It turns out that 3P = oo (mod 59), while 4P = co (mod 47). Therefore,
when we tried to compute 3P, we had a slope that was infinite mod 59 but
finite mod 47. In other words, we had a denominator that was 0 mod 59
but nonzero mod 47. Taking the gcd allowed us to isolate the factor 59.

The same type of idea is the basis for many factoring algorithms. If
n = pq, you cannot separate p and g as long as they behave identically.
But if you can find something that makes them behave slightly differently,
then they can be found. In the example, the multiples of P reached oo
faster mod 59 than mod 47. Since in general the primes p and g should act
fairly independently of each other, one would expect that for most curves E
(mod pg) and points P, the multiples of P would reach co mod p and mod
q at different times. This will cause the ged to find either p or q.

Usually, it takes several more steps than 3 or 4 to reach oo mod p or
mod ¢. In practice, one multiplies P by a large number with many small
prime factors, for example, 10000!. This can be done via successive doubling
(the additive analog of successive squaring; see Exercise 13). The hope is
that this multiple of P is oo either mod p or mod ¢. This is very much
the analog of the p — 1 method of factoring. However, recall that the p — 1
method (see Section 6.4) usually doesn’t work when p — 1 has a large prime
factor. The same type of problem could occur in the elliptic curve method
just outlined when the number m such that mP equals co has a large prime
factor. If this happens (so the method fails to produce a factor after a
while), we simply change to a new curve £. This curve will be independent
of the previous curve and the value of m such that mP = oo should have
essentially no relation to the previous m. After several tries (or.if several
curves are treated in parallel), a good curve is often found, and the number
n = pq is factored. In contrast, if the p — 1 method fails, there is nothing
that can be changed other than using a different factorization method.

Example. We want to factor n = 455839. Choose

E:y?=23+5x-5 P=(1,1).

Suppose we try to compute 10!P. There are many ways to do this. One
is to compute 2!P,3!P = 3(2!P),4!P = 4(3!P),.... If we do this, every-
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thing is fine through 7!P, but 8!P requires inverting 599 (mod n). Since
ged(599,n) = 599, we can factor n as 599 x 761.

Let’s examine this more closely. A computation shows that £ (mod 599)
has 640 = 27 x 5 points and E (mod 761) has 777 = 3 x 7 x 37 points. More-
over, 640 is the smallest positive m such that mP = oo on E (mod 599), and
777 is the smallest positive m such that mP = oo on E (mod 761). Since
8! is a multiple of 640, it is easy to see that 8!P = co on E (mod 599), as
we calculated. Since 8! is not a multiple of 777, it follows that 8!P # oo on
E (mod 761). Recall that we obtain co when we divide by 0, so calculating
8!P asked us to divide by 0 {(mod 599). This is why we found the factor
599. |

In general, consider an elliptic curve E (mod p) for some prime p. The
smallest positive m such that mP = oo on this curve divides the number N
of points on E (mod p) (if you know group theory, you’ll recognize this as
a corollary of Lagrange’s theorem), so NP = oco. Quite often, m will be N
or a large divisor of N. In any case, if IV is a product of small primes, then
B! will be a multiple of N for a reasonably small value of B. Therefore,
B!P = co.

A number that has only small prime factors is called smooth. More
precisely, if all the prime factors of an integer are less than or equal to B,
then it is called B-smooth. This concept played a role in the quadratic
sieve (Section 6.4), the p — 1 factoring method (Section 6.4), and the index
calculus attack on discrete logarithms (Section 7.2).

Recall from Hasse’s theorem that N is an integer near p. It is possible
to show that the density of smooth integers is large enough (we’ll leave
small and large undefined here) that if we choose a random elliptic curve F
(mod p), then there is a reasonable chance that the number N is smooth.
This means that the elliptic curve factorization method should find p for
this choice of the curve. If we try several curves £ (mod n), where n = pgq,
then it is likely that at least one of the curves £ (mod p) or E (mod ¢) will
have its number of points being smooth.

In summary, the advantage of the elliptic curve factorization method
over the p — 1 method is the following. The p — 1 method requires that p— 1
is smooth. The elliptic curve method requires only that there are enough
smooth numbers near p so that at least one of some randomly chosen integers
near p is smooth. This means that elliptic curve factorization succeeds much
more often than the p — I method.

The elliptic curve method seems to be best suited for factoring numbers
of medium size, say around 40 or 50 digits. These numbers are no longer
used for the security of factoring-based systems such as RSA, but it is some-
times useful in other situations to have a fast factorization method for such
numbers. Also, the elliptic curve method is effective when a large number
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has a small prime factor, say of 10 or 20 decimal digits. For large numbers
where the prime factors are large, the quadratic sieve and number field sieve
are superior (see Section 6.4).

16.3.1 Singular Curves

In practice, the case where the cubic polynomial 23 + bz + ¢ has multiple
roots rarely arises. But what happens if it does? Does the factorization
algorithm still work? The discriminant 453 + 27¢? is zero if and only if there
is a multiple root (this is the cubic analog of the fact that ax® + bz + c
has a double root if and only if 4> — 4ac = 0). Since we are working mod
n = pq, the result says that there is a multiple root mod r if and only if the
discriminant is 0 mod n. Since n is composite, there is also the intermediate
case where the ged of n and the discriminant is neither 1 nor n. But this
gives a nontrivial factor of n, so we can stop immediately in this case.

Example. Let’s look at an example:
P =23-3z+2=(z—1)*(z+2).
Given a point P = (z,y) on this curve, we associate the number
(y+V3(z—1))/(y - V3(z - 1)).

It can be shown that adding the points on the curve corresponds to multi-
plying the corresponding numbers. The formulas still work, as long as we
don’t use the point (1,0). Where does this come from? The two lines tan-
gent to the curve at (1,0) are y +v3(z — 1) =0 and y — v3(z — 1) = 0.
This number is simply the ratio of these two expressions.

Since we need to work mod n, we give an example mod 143. We choose
143 since 3 is a square mod 143; in fact, 822 = 3 (mod 143). If this were
not the case, things would become more technical with this curve. We could
easily rectify the situation by choosing a new curve. ,

Consider the point P = (~1,2) on y? = 22 — 3z +2 (mod 143): Look at
its multiples: "

P=(-1,2), 2P=(2,141), 3P =(112,101), 4P = (10,20).

When trying to compute 5P, we find the factor 11 of 143.

Recall that we are assigning numbers to each point on the curve, other
than (1,1). Since we are working mod 143, we use 82 in place of v/3. There-
fore, the number corresponding to (—1,2) is (2+82(—1—1))/(2 —82(—1—
1)) = 80 (mod 143). We can compute the numbers for all the points above:

P« 80, 2P« 108, 3P <60, 4P« 8l
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Let’s compare with the powers of 80 mod 143:
80' =80, 80*=108, 80%=60, 80*=81, 80°=45.

We get the same numbers. This is simply the fact mentioned previously
that the addition of points on the curve corresponds to multiplication of the
corresponding numbers. Moreover, note that 45 =1 (mod 11), but not mod
13. This corresponds to the fact that 5 times the point (—1,2) is co mod 11
but not mod 13. Note that 1 is the multiplicative identity for multiplication
mod 11, while co is the additive identity for addition on the curve.

It is easy to see from the preceding that factorization using the curve
y? = £3—3z+2 is essentially the same as using the classical p—1 factorization
method (see Section 6.4). i

In the preceding example, the cubic equation had a double root. An
even worse possibility is the cubic having a triple root. Consider the curve

R
To a point (z,y) # (0,0) on this curve, associate the number z/y. Let’s
start with the point P = (1,1) and compute its multiples:

11 11
-,z 3P
478)’

Note that the corresponding numbers z/y are 1,2,3,...,m. Adding the
points on the curve corresponds to adding the numbers z/y.

If we are using the curve y? = 23 to factor n, we need to change the
points mP to integers mod n, which requires finding inverses for m? and
m® mod n. This is done by the extended Euclidean algorithm, which is
essentially a gcd computation. We find a factor of n when ged(m,n) # 1.
Therefore, this method is essentially the same as computing in succession
ged(2,n), ged(3,n), ged(4,n), ... until a factor is found. This is a slow ver-
sion of trial division, the oldest factorization technique known. Of course,
in the elliptic curve factorization algorithm, a large multiple (B!)P of P is
usually computed. This is equivalent to factoring by computing gcd(B!, n),
a method that is often used to test for prime factors up to B.

In summary, we see that the p — 1 method and trial division are included
in the elliptic curve factorization algorithm if we allow singular curves.

1 1
P=(1,1), 2P=( mP = (—, —).

= §7E))"'a m

16.4 Elliptic Curves in Characteristic 2

Many applications use elliptic curves mod 2, or elliptic curves defined over
the finite fields GF(2") (these are described in Section 3.11). This is often
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because mod 2 adapts well to computers. In 1999, NIST recommended 15
elliptic curves for cryptographic uses (see [FIPS 186-2]). Of these, 10 are
over finite fields GF(2").

If we’re working mod 2, the equations for elliptic curves need to be mod-
ified slightly. There are many reasons for this. For example, the derivative
of y? is 2yy’ = 0, since 2 is the same as 0. This means that the tangent lines
we compute are vertical, so 2P = oo for all points P. A more sophisticated
explanation is that the curve y? = 23 + bz + ¢ (mod 2) has singularities
(points where the partial derivatives with respect to z and y simultaneously
vanish).

The equations we need are of the form

E: 9y +a1zy + asy = 2° + a9z? + a4z + ag,

where a1, ..., ag are constants. The addition law is slightly more compli-
cated. We still have three points adding to infinity if and only if they lie
on a line. Also, the lines through oo are vertical. But, as we’ll see in the
following example, finding —P from P is not the same as before.

Example. Let E : 2 +y = 23 + = (mod 2). As before, we can list the
points on F:
0,0y, (0,1), (1,0), (1,1), oo.

Let’s compute (0,0) + (1,1). The line through these two points is y = z.
Substituting into the equation for E yields 22 + z = 23 + z, which can
rewritten as z%(z + 1) = 0. The roots are = 0,0,1 (mod 2). Therefore,
the third point of intersection also has z = 0. Since it lies on the line y = z,
it must be (0,0). (This might be puzzling. What is happening is that the
line is tangent to E at (0,0) and also intersects E in the point (1,1).) As
before, we now have

(0,0) + (0,0) + (1,1) = oo.

To get (0,0) 4 (1,1) we need to compute oo — (0,0). This means wé need to
find P such that P + (0,0) = co. A line through oo is still a vertical line.
In this case, we need one through (0,0), so we take z = 0. This intersects
E in the point P = (0,1). We conclude that (0,0) + (0,1) = co. Putting
everything together, we see that

(0,0) + (1,1) = (0,1). |

In most applications, elliptic curves mod 2 are not large enough. There-
fore, elliptic curves over finite fields are used. For an introduction to finite
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fields, see Section 3.11. However, in the present section, we only need the
field GF'(4), which we now describe.

Let
GF(4) ={0,1,w,w?},

with the following laws:

1. 0+ z =z for all z.

2. z+x =0 for all z.
3. 1-z =z for all .
4. 14+ w=w?
5. Addition and multiplication are commutative and associative, and the
distributive law holds: z(y + 2) = zy + zz for all z, y, 2.
Since

Cm=w=w (ltw=wtt=w+ (14w =1,

we see that w? is the multiplicative inverse of w. Therefore, every nonzero
element of GF'(4) has a multiplicative inverse.

Elliptic curves with coefficients in finite fields are treated just like elliptic
curves with integer coefficients.

Example. Consider

E:y?+zy=2°+uw,
where w € GF(4) is as before. Let’s list the points of E with coordinates in
GF(4):

a:=0:>y2=w=>y=w2

:c=1:>y2+y=1+w:w2:> no solutions
:c:w———>y2+wy=w2=>y=1,w2 )
z =w? ———>y2+w2y= l+w=w?= no solutions”
T =00=—=>Y = 00.

The points on E are therefore
0,0?), (w,1), (w,w?),’ oo

Let’s compute (0,w?)+ (w,w?). The line through these two points is y = w?.
Substitute this into the equation for E:

w4+w2a:=w3+w,
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which becomes z2 + w?z = 0. This has the roots £ = 0,w,w. The third
point of intersection of the line and E is therefore (w,w?), so

(0,?) + (w,w?) + (w,w?) = co.

We need —(w,w?), namely the point P with P + (w,w?) = co. The vertical
line £ = w intersects E in P = (w, 1), so

0,w?) + (w,w?) = (w,1). n

For cryptographic purposes, elliptic curves are used over fields GF(2")
with n large, say at least 150.

16.5 Elliptic Curve Cryptosystems

Elliptic curve versions exist for many cryptosystems, in particular those
involving discrete logarithms. An advantage of elliptic curves over working
with integers mod p is the following. In the integers, it is possible to use
the factorization of integers into primes (especially small primes) to attack
the discrete logarithm problem. This is known as the index calculus and is
described in Section 7.2. There seems to be no good analog of this method
for elliptic curves. Therefore, it is possible to use smaller primes, or smaller
finite fields, with elliptic curves and achieve a level of security comparable to
that for much larger integers mod p. This allows great savings in hardware
implementations, for example.

In the following, we describe three elliptic curve versions of classical
algorithms. As we'll see, there is a general procedure for changing a classical
system based on discrete logarithms into one using elliptic curves:

1. Change modular multiplication to addition of points on an elliptic
curve.

2. Change modular exponentiation to multiplying a point on an elliptic
curve by an integer.

Of course, the second situation above is really a special case of the first, since
exponentiation consists of multiplying a number by itself several times, and
multiplying a point by an integer is adding the point to itself several times.

16.5.1 An Elliptic Curve ElGamal Cryptosystem

We recall the non-elliptic curve version. Alice wants to send a message «
to Bob, so Bob chooses a large prime p and an integer a mod p. He also
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chooses a secret integer a and computes 8 = a® (mod p). Bob makes p, a, 8
public and keeps a secret. Alice chooses a random &k and computes y; and
ya, Where

k

y1 = oF and yo = z6*  (mod p).

She sends (y1,y2) to Bob, who then decrypts by calculating
z=yy;® (mod p).

Now we describe the elliptic curve version. Bob chooses an elliptic curve
E (mod p), where p is a large prime. He chooses a point @ on E and a secret
integer a. He computes

B=ax (=at+a+---+a).

The points a and § are made public, while a is kept secret. Alice expresses
her message as a point  on E (see Section 16.2). She chooses a random
integer &, computes

y1 = ko and yo = x + kG,
and sends the pair 31, y2 to Bob. Bob decrypts by calculating

T =Y2— ayi.

A more workable version of this system is due to Menezes and Vanstone.
It is described in [Stinsonl, p. 189].

Example. We must first generate a curve. Let’s use the prime p = 8831,
the point G = (z,y) = (4,11), and ¢ = 3. To make G lie on the curve
y? = 2% + bz + ¢ (mod p), we take b = 45. Alice has a message, represented
as a point Py, = (5,1743), that she wishes to send to Bob. Here is how she
does it. _

Bob has chosen a random number ag = 3 and has published the point
apG = (413,1808).

Alice downloads this and chooses a random number £ = 8. She sends
Bob kG = (5415,6321) and P, + k(apG) = (6626,3576). He first calcu-
lates ap(kG) = 3(5415,6321) = (673,146). He now subtracts this from
(6626, 3576): -

(6626, 3576) — (673, 146) = (6626, 3576) + (673, —146) = (5, 1743).

Note that we subtracted points by using the rule P — Q = P + (—Q) from
Section 16.1. [
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16.5.2 Elliptic Curve Diffie-Hellman Key Exchange

Alice and Bob want to exchange a key. In order to do so, they agree on
a public basepoint G on an elliptic curve E : y2 = 22 + bz + ¢ (mod p).
Let’s choose p = 7211 and a = 1 and G = (3,5). This gives us b = 7206.
Alice chooses N4 randomly and Bob chooses Ng randomly. Let’s suppose
Ny =12 and Ng = 23. They keep these private to themselves but publish
NG and NgG. In our case, we have

NG = (1794,6375) and NpG = (3861,1242).
Alice now takes NpG and multiplies by N4 to get the key:
Na(NQG) = 12(3861,1242) = (1472, 2098).
Similarly, Bob takes N4G and multiplies by Np to get the key:
Np(NaG) = 23(1794,6375) = (1472, 2098).

Notice that they have the same key.

16.5.3 ElGamal Digital Signatures

There is an elliptic curve analog of the procedure described in Section 9.2.
A few modifications are needed to account for the fact that we are working
with both integers and points on an elliptic curve.

Alice wants to sign a message m (which might actually be the hash of
a long message). We assume m is an integer. She fixes an elliptic curve E
(mod p), where p is a large prime, and a point A on E. We assume that
the number of points n on E has been calculated and assume 0 <m < n (if
not, choose a larger p). Alice also chooses a private integer a and computes
B = aA. The prime p, the curve F, the integer n, and the points A and B
are made public. To sign the message, Alice does the following:

1. Chooses a random integer k with 1 < k < n and ged(k,n)-= 1, and
computes R = kA = (z,y) "

2. Computes s = k~}(m — az) (mod n)
3. Sends the signed message (m, R,s) to Bob

Note that R is a point on F, and m and s are integers.
Bob verifies the signature as follows:

1. Downloads Alice’s public information p, £,n, A, B

2. Computes Vi = 2B + sR and V5 = mA
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3. Declares the signature valid if V; = 1,

The verification procedure works because
Vi=zB+sR=zaA+ k™ (m —az)(kA) = zaA+ (m —az)A = mA = V3.

There is a subtle point that should be mentioned. We have used k~! in
this verification equation as the integer mod n satisfying ¥~k = 1 (mod n).
Therefore, k~1k is not 1, but rather an integer congruent to 1 mod n. So
k~lk = 1 +tn for some integer t. It can be shown that nA = co. Therefore,

E7'kA=(1+tn)A=A+t(nA)=A+too= A.

This shows that k! and k cancel each other in the verification equation, as
we implicitly assumed above.

The classical ElGamal scheme and the present elliptic curve version are
analogs of each other. The integers mod p are replaced with the elliptic
curve F, and the number p — 1 becomes n. Note that the calculations in the
classical scheme work with integers that are nonzero mod p, and there are
p — 1 such congruence classes. The elliptic curve version works with points
on the elliptic curve that are multiples of A, and the number of such points
is a divisor of n.

The use of the z-coordinate of R in the elliptic version is somewhat
arbitrary. Any method of assigning integers to points on the curve would
work. Using the z-coordinate is an easy choice. Similarly, in the classical
ElGamal scheme, the use of the integer r in the mod p—1 equation for s might
seem a little unnatural, since r was originally defined mod p. However, any
method of assigning integers to the integers mod p would work (see Exercise
10 in Chapter 9). The use of r itself is an easy choice.

There is an elliptic curve version of the Digital Signature Algorithm that
is similar to the preceding (Exercise 14).

16.6 Identity-Based Encryption

In most public key systems, when Alice wants to send a message to Bob,
she looks up his public key in a directory and then encrypts her message.
However, she needs some type of authentication — perhaps the directory has
been modified by Eve, and the public key listed for Bob was actually created
by Eve. Alice wants to avoid this situation. It was suggested by Shamir in
1984 that it would be nice to have an identity-based system, where Bob’s
public identification information (for example, his email address) serves as
his public key. Such a system was finally designed in 2001 by Boneh and
Franklin.
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Of course, some type of authentication of each user is still needed. In the
present system, this occurs in the initial setup of the system during the com-
munications between the Trusted Authority and the User. In the following,
we give the basic idea of the system. For more details and improvements,
see [Boneh-Franklin|.

Before describing the system, we need some preliminary information.
Let p be a prime of the form 6q — 1, where g is also prime. Let E be the
elliptic curve y% = 2% + 1 mod p. We need the following facts about E.

1. There are exactly p + 1 = 64 points on FE.

2. There is a point Py # co such that ¢Fy = oo. In fact, if we take a
random point P, then, with very high probability, 6P # co and 6P is
a multiple of Py.

3. There is a function € that maps pairs of points (aFp, bF) to gth roots
of unity for all integers a, b. It satisfies the bilinearity property

é(aPy, bPy) = &(Py, Po)®
for all a,b.

4. If we are given two points P and @ that are multiples of Py, then
é(P, @) can be computed quickly from the coordinates of P and Q.

5. é(Po, Po) # 1, so it is a non-trivial gth root of unity.

Remarks. Properties (1) and (2) are fairly easy to verify (see Exercises 16
and 17). The existence of € satisfying (3), (4), (5) is deep. In fact, € is a
modification of what is known as the Weil pairing in the theory of elliptic
curves. The usual Weil pairing e satisfies e(Py, Py) = 1, but the present
version is modified using special properties of E to obtain (5).

The fact that é(P,Q) can be computed quickly needs some more expla-
nation. The two points P,Q satisfy P = aFPy and Q = bFP, for some a,b.
However, to find a and b requires solving a discrete log problem, which could
take a long time. Therefore, the obvious solution of choosing a random gth
root of unity for &(Py, Py) and then using the bilinearity property to define
€ does not work, since it cannot be computed quickly. Instead, é(P,Q) is
computed directly in terms of the coordinates of the points P, Q.

Although we will not need to know this, the gth roots of unity lie in the
finite field with p? elements (see Section 3.11).

For more about the definition of €, see [Boneh-Franklin] or [Washington].

The curve E is an example of a supersingular elliptic curve, namely one
where the number of points is congruent to 1 mod p. (See Exercise 16.) For
a while, these curves were regarded as desirable for cryptographic purposes,
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because computations can be done quickly on them. But then it was shown
that the discrete logarithm problem for them was only slightly more difficult
than the classical discrete logarithm mod p (see Exercise 20), so they fell out
of favor (after all, they are slower computationally than simple multiplication
mod p, and they provide no security advantage). Because of the existence
of the pairing &, they have become popular again.

To set up the cryptosystem, we’ll need two public hash functions:

1. H; maps arbitrary length binary strings to multiples of Py. A little
care is needed in defining H;, since no one should be able, given a
binary string b, to find k with H;(b) = kPy. See Exercise 18.

2. Hs maps qth roots of unity to binary strings of length n, where n is the
length of the messages that will be sent. Since Hs must be specified
before the system is set up, this limits the lengths of the messages that
can be sent. However, the message could be, for example, a DES key
that is used to encrypt the remainder of a much longer message, so
this length requirement is not a severe restriction.

To set up the system we need a Trusted Authority. Let’s call him Arthur.
Arthur does the following.

1. He chooses, once and for all, a secret integer s. He computes Py = sFp,
which is made public.

2. For each User, Arthur finds the user’s identification ID (written as a
binary string) and computes

Dyjger = s H1(ID).
Recall that Hy(ID) is a point on E, so Dyjge, is s times this point.

3. Arthur sends Dyjger to the user, who keeps it secret. Arthur does not
need to store Dyjger, 50 he discards it.

The system is now ready to operate, but first let’s review what is kriown:

Public: E,p, Po, Pl, Hl, H2
Secret: s (known only to Arthur), Dyjge (one for each User; it is known
only by that User)

Alice wants to send an email message m (of binary length n) to Bob, who
is one of the Users. She knows Bob’s address, which is bob@computer.com.
This is his ID. Alice does the following.

1. She computes g = é(H(bob@computer.com), P;). This is a gth root of
unity.
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2. She chobses a random 7 Z 0 (mod ¢) and computes

t=ma® Ha(g").

3. She sends Bob the ciphertext
¢ = (rPy, t).
Note that +Fp is a point on E, and ¢ is a binary string of length n.

If Bob receives a pair (U,v), where U is a point on F and v is a binary
string of length n, then he does the following.

1. He computes h = é(Dpg}, U), which is a gth root of unity.
2. He recovers the message as

m = v @ Hy(h).

Why does this yield the message? If the encryption is performed cor-
rectly, Bob receives U = rPy and v = t = m @ Hy(g"). Since Dpyp =
s Hj (bob@computer. com),

h= é(DBob’ rPy) = é(Hy, Py)*" = é(Hy, sPy)" =4 (16.1)
Therefore,
t® Hy(h) =t ® Ha(g") =m @ Ha(g") ® Ha(g") = m,

as desired. Note that the main step is Equation 16.1, which removes the
secret s from the Dpgp, in the first argument of € and puts it on the Py
in the second argument. This follows from the bilinearity property of the
function é.

It is very important that s be kept secret. If Eve obtains s, then she
can compute the points Dyjger for each user and read every email. Since

. P; = sPy, the security of s is compromised if Eve can compute discrete logs

on the elliptic curve. Moreover, the ciphertext contains rFPy. If Eve can
compute a discrete log and find r, then she can compute g" and use this
to find Ho(g") and also m. Therefore, for the security of the system, it is
vital that p be chosen large enough that discrete logs are computationally
infeasible.
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16.7 Exercises

1.

V]

10.

(a) Let 23 + az? 4+ bz + ¢ be a cubic polynomial with roots r,7g,73.
Show that r{ + 9 + 73 = —a.
(b) Write z = z1 — a/3. Show that

B ta? +br+c=ad+ bz + 7,

with ¥ = b — (1/3)a? and ¢ = ¢ — (1/3)ab + (2/27)a3. (Remark:
This shows that a simple change of variables allows us to consider
the case where the coefficient of 22 is 0.)

(a) List the points on the elliptic curve E: y? =23 — 2 (mod 7).
(b) Find the sum (3,2) + (5,5) on E.
(c) Find the sum (3,2) 4+ (3,2) on E.

Show that if P = (z,0) is a point on an elliptic curve, then 2P = co.

The points (3, £5) lie on the elliptic curve y? = 23 — 2 defined over the
rational numbers. Find another point with rational coordinates that
lies on this curve.

(a) Show that @ = (2,3) on y? = z3 + 1 satisfies 6Q = oco. (Hint:
Compute 3@Q, then use Exercise 3.)

(b) Your computations in (a) probably have shown that 2Q # oo and
3Q # o0o. Use this to show that the points 00, @, 2Q, 3Q, 4Q, 5Q
are distinct.

(a) Factor n = 35 by the elliptic curve method by using the elliptic
curve y2 = z° 4 26 and calculating 3 times the point P = (10,9).

(b) Factor n = 35 by the elliptic curve method by using the elliptic
curve y2 = 23 + 5z + 8 and the point P = (1, 28).

Suppose you want to factor a composite integer n by using the elliptic
curve method. You start with the curve y? = 2% — 42 (mod n) and
the point (2,0). Why will this not yield the factorization of n?

Devise an analog of the procedure in Exercise 8(a) in Chapter 7 that
uses elliptic curves.

Show how to use a Baby Step, Giant Step attack (see Section 7.2) to
attack the discrete log problem on elliptic curves.

Show that if P,Q, R are points on an elliptic curve, then
P+Q+R=00 < P,Q,R are collinear.
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11. Let P be a point on the elliptic curve E mod n.

(a) Show that there are only finitely many points on F, so P has only
finitely many distinct multiples.

(b) Show that there are integers ¢,j with ¢ > j such that iP = jP.
Conclude that (¢ — j)P = oo.

(c) The smallest positive integer k such that kP = oo is called the
order of P. Let m be an integer such that mP = oco. Show
that & divides m. (Hint: Imitate the proof of Exercise 20(c, d)
in Chapter 3.)

(d) (for those who know some group theory) Use Lagrange’s theorem
from group theory to show that the number of points on F is a
multiple of the order of P. (Combined with Hasse’s theorem, this
gives a way of finding the number of points on E. See Computer
Problems 1 and 4.)

12. Let P be a point on the elliptic curve £ mod n. Suppose you know a
positive integer k such that kP = co. You want to prove (or disprove)
that k is the order of P.

(a) Show that if (k/p)P = oo for some prime factor p of k, then k is
not the order of P.

(b) Suppose m|k and 1 < m < k. Show that m/|(k/p) for some prime
divisor p of k.

(c) Suppose that (k/p)P # oo for each prime factor of k. Use Ex-
ercise 11(c) to show that the order of P is k. (Compare with
Exercise 21 in Chapter 3. For an example, see Computer Prob-
lem 4.)

13. (a) Let x = byby...b, be an integer written in binary. Let P be a
point on the elliptic curve E. Perform the following procedure:
1. Start with £k =1 and 51 = oo.
2. If by = 1, let Ry = Sk + P. If by, = 0, let Ry = Si.
3. Let Sgy+1 = 2Rg.
4. f k= w, stop. If £ < w, add 1 to k and go to step 2.
Show that R,, = zP. (Compare with Exercise 23(a) in Chapter
3.) -
(b) Let = be a positive integer and let P be a point on an elliptic
curve. Show that the following procedure computes zP.

1. Start with a =2, B = 00,C = P.
2. If a is even, let a = a/2, and let B = B,C =2C.
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3. Ifaisodd,leta=a—1,andlet B=B+C,C=C.
4. If a # 0, go to step 2.
5. Output B.

(Compare with Exercise 23(b) in Chapter 3.)

Here is an elliptic curve version of the Digital Signature Algorithm.
Alice wants to sign a message m, which is an integer. She chooses a
prime p and an elliptic curve E (mod p). The number of points n on E
is computed and a large prime factor g of n is found. A point A(# o0)
is chosen such that g4 = oo. (In fact, n is not needed. Choose a point
A’ on E and find an integer n’ with n’A’ = co. There are ways of
doing this, though it is not easy. Let g be a large prime factor of n/, if
it exists, and let A = (n//q)A’. Then gA = 00.) It is assumed that the
message satisfies 0 < m < ¢. Alice chooses her secret integer a and
computes B = aA. The public information is p, F, ¢, A, B. Alice does
the following;:

1. Chooses a random integer k£ with 1 < £ < ¢ and computes R =
kA = (z,y)

2. Computes s = k~'(m + az) (mod q)

3. Sends the signed message (m, R, s) to Bob

Bob verifies the signature as follows:

1. Computes u; = s~ 'm (mod ¢) and ug = s~ 'z (mod gq)
2. Computes V =u1 A + ueB
3. Declares the signature valid if V=R

(a) Show that the verification equation holds for a correctly signed
message. Where is the fact that gA = co used (see the “subtle
point” mentioned in the ElGamal scheme in Section 16.5)7

(b) Why does k! (mod q) exist? .
(c) If q is large, why is there very little chance that s—! does not exist

mod ¢? How do we recognize the case when it doesn’t exist? (Of
course, in this case, Alice should start over by choosing a new k.)

(d) How many computations “(large integer)x (point on E)” are made
in the verification process here? How many are made in the veri-
fication process for the elliptic ElGamal scheme described in the
text? (Compare with the end of Section 9.5.)

Let A and B be points on an elliptic curve and suppose B = kA for
some integer k. Suppose also that 24 = oo for some integer n, but
T=2""1A# oo.
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(a) Show that if k = k' (mod 2"), then B = k' A. Therefore, we may
assume that 0 < k < 2™,

(b) Let j be an integer. Show that jT' = oo when j is even and
JT # oo when j is odd.

(c) Write k = ¢ + 221 + 4dx2 + --- + 2"‘1wn_1, where each z; is 0
or 1 (binary expansion of k). Show that zo = 0 if and only if
2"1B = co.

(d) Suppose that for some m < n we know g, ..., Tm—1. Let Qm =
B—(xo+---+ 2™ 1y _1)A. Show that 2"~™"1Q,, = oo if
and only if z,, = 0. This allows us to find z,,. Continuing in
this way, we obtain xg,...,Z,_1, and therefore we can compute
k. This technique can be extended to the case where sA = oo,
where s is an integer with only small prime factors. This is the
analog of the Pohlig-Hellman algorithm (see Section 7.2).

Let p = —1 (mod 3) be prime.

(a) Show that there exists d with 3d = 1 (mod p — 1).

(b) Show that if a® = b (mod p) if and only if a = b¢ (mod p). This
shows that every integer mod p has a unique cube root.

(c) Show that y? = z3+1 (mod p) has exactly p+1 points (including
the point co). (Hint: Apply part (b) to y%>—1.) (Remark: A curve
mod p whose number of points is congruent to 1 mod p is called
supersingular.)

(for those who know some group theory)

(a) In the situation of Exercise 16, suppose that p = 6¢ — 1 with ¢
also prime. Show that there exists a point Py # oo such that
qFy = oo.

(b) Let Q=(2,3), as in Exercise 5. Show that if P¢ {0, @, 2@Q, 3Q,
4Q,5Q}, then 6P # co and 6P is a multiple of Py. (For simplicity,
assume that ¢ > 3.) g

In the identity-based system of Section 16.6, suppose Eve can compute
k such that H;(bobQcomputer.edu) = k Py. Show that Eve can compute
g" and therefore read Bob’s messages.

Let Hy be a hash function that takes a binary string of arbitrary length
as input and then outputs an integer mod p. Let p = 6¢ — 1 be prime
with ¢ also prime. Show how to use Hg to construct a hash function
H; that takes a binary string of arbitrary length as input and outputs
a point on the elliptic curve ¢ = 23 -1 (mod p) that is a multiple of
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the point Py os Exercise 17. (Hint: Use the technique of Exercise 16
to find y, then z. Then use Exercise 17(b).)

(a) Using the function € of Section 16.6, show that an analogue of
the Decision Diffie-Hellman problem can be solved for the curve
y? = 2% + 1 (mod p), where p = 6¢ — 1 is prime with g also
prime. Namely, if we are given aPy, bFy, cPy, show how we can
decide whether abPy = cFp.

(b) Show that the discrete logarithm problem for multiples of Py on
E (namely, if we know kP, find k) can be reduced to solving a
classical discrete logarithm for the gth roots of unity, hence in the
field with p? elements. (Remark: This is the reason supersingular
curves became unpopular.)

Suppose you try to set up an identity-based cryptosystem as follows.
Arthur chooses large primes p and ¢ and forms n = pq, which is made
public. For each User, he converts the User’s identification ID to
a number eyjge; by some public method and then computes d with
deyser = 1 (mod ¢(n)). Arthur gives d to the User. The integer n
is the same for all users. When Alice wants to send an email to Bob,
she uses the public method to convert his email address to eg.p, and
then uses this to encrypt messages with RSA. Bob knows d, so he can
decrypt. Explain why this system is not secure.

16.8 Computer Problems

1. Let FE be the elliptic curve y? = 23 + 2z + 3 (mod 19).

(a) Find the sum (1,5) + (9, 3).

(b) Find the sum (9, 3) + (9, —3).

(c) Using the result of part (b), find the difference (1,5) — (9, 3).
(d) Find an integer &k such that k(1,5) = (9, 3).

(e) Show that (1,5) has exactly 20 distinct multiples, including co.

(f) Using (e) and Exercise 11(d), show that the number of points on
E is a multiple of 20. Use Hasse’s theorem to show that E has
exactly 20 points.

2. You want to represent the message 12345 as a point (x, y) on the curve
y? = 23 + 7z + 11 (mod 593899). Write z = 12345_ and find a value
of the missing last digit of x such that there is a point on the curve
with this z-coordinate.
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3. (a) Factor 3900353 using elliptic curves.

(b) Try to factor 3900353 using the p — 1 method of Section 6.4.
Using the knowledge of the prime factors obtained from part (a),
explain why the p—1 method does not work well for this problem.

4. Let P = (2,3) be a point on the elliptic curve y? = 23 — 10z + 21
(mod 557).

(a) Show that 189P = oo, but 63P # oo and 27P # oo.
(b) Use Exercise 12 to show that P has order 189.
(c) Use Exercise 11(d) and Hasse’s theorem to show that the elliptic

curve has 567 points.

5. Compute the difference (5,9) — (1,1) on the elliptic curve y* = z3 —
11z + 11 (mod 593899). Note that the answer involves large integers,

even though the original points have small coordinates.




