F.F.T. Hashing is not Collision-free

T. BARITAUD * , H. GILBERT * , M. GIRAULT **

- (*) CNET PAA/TSA/SRC 38-40, avenue du Général Leclerc 92131 ISSY LES MOULINEAUX (France)
- (**) SEPT PEM
 42, rue des Coutures
 BP 6243
 14066 CAEN (France)

Abstract

The FFT Hashing Function proposed by C.P. Schnorr [1] hashes messages of arbitrary length into a 128-bit hash value. In this paper, we show that this function is not collision free, and we give an example of two distinct 256-bit messages with the same hash value. Finding a collision (in fact a large family of, colliding messages) requires approximately 2 partial computations of the hash function, and takes a few hours on a SUN3-workstation, and less than an hour on a SPARC-workstation.

A similar result discovered independently has been announced at the Asiacrypt'91 rump session by Daemen-Bosselaers-Govaerts-Vandewalle [2].

1 The FFT Hashing Function

1.1 The Hash algorithm

Let the message be given as a bit string $m_1 m_2 ... m_l$ of t bit.

The message is first padded so that its length (in bits) becomes a multiple of 128. Let the padded message $M_1M_2 \dots M_n$ consist of n blocks M_1, \dots, M_n , each of the M_i (i=1, ...,n) being 128-bit long.

The algorithm uses a constant initial value H₀ given in hexadecimal as

 $H_0 = 0123 4567 89ab$ cdcf fcdc ba98 7654 3210 in $\{0,1\}^{128}$.

Let p be the prime $65537 = 2^{16} + 1$.

We will use the Fourier transform $FT_8: \{0, \dots, p-1\}^8 \longrightarrow \{0, \dots, p-1\}^8$

$$(a_0, \dots, a_7) \longrightarrow (b_0, \dots, b_7)$$

with
$$b_i = \sum_{j=0}^{7} 2^{4ij} a_j \mod p$$
, for $i = 0, ..., 7$.

Algorithm for the hash function h:

INPUT:
$$M_1 M_2 ... M_n$$
 in $\{0,1\}^{n.128}$ (a padded message)

DO:
$$H_{i} = g(H_{i-1}, M_{i})$$
 for $i = 1, ..., n$

OUTPUT:
$$h(M) := H_n$$

Algorithm for
$$g: Z_p^{16} \longrightarrow (0,1)^{8.16}$$

INPUT
$$(c_0, ..., c_{15})$$
 in $\{0,1\}^{16.16}$

1.
$$(c_0, c_2, \dots, c_{14}) := FT_8(c_0, c_2, \dots, c_{14})$$

2. FOR
$$i = 0, ..., 15 DO$$

$$e_i := e_i + c_{i-1}e_{i-2} + c_{e_{i-3}} + 2^i \pmod{p}$$

(The lower indices i, i-1, i-2, i-3, c_{i-3} are taken modulo 16)

3. REPEAT steps 1 and 2

OUTPUT
$$\frac{1}{e_i} := e_i \mod 2^{16}$$
, for $i = 8, ..., 15$ (an element of $\{0,1\}^{8.16}$)

1.2 Notations

For a better clarity of our explanation, we will denote by e_i^0 (i=0, ...,15) the initial e_i values, and we will denote by step 3 (resp. step 4) the second pass of step 1 (resp. step2) in the algorithm for g.

When it will be necessary to avoid any kind of slip, we will denote by c_i^k (i=0, ...,15; k=0, ...,4) the c_i intermediate value, after step k.

In order to simplify the expressions, we are using the following notations:

- The additions (x+y), multiplications (x,y) and exponentiations (x,y) are implicitly made modulo p, except when the operands are lower indices.
 - The = symbol denotes that the right and the left terms are congruent modulo p.
- For lower indices the additions (i+j) and substractions (i-j) are implicitly made modulo 16, and the symbol denotes that the right and the left terms are congruent modulo 16.

1.3 Preliminary remarks

The difficulty of finding collisions is related to the diffusion properties of the hashing function, i.e. the influence of a modification of an intermediate variable on the subsequent variables of the calculation.

Remark 1 (limitation on the diffusion at steps 1 and 3)

At step 1 and 3, the input values e_1, e_2, \dots, e_{15} are kept unchanged.

Remark 2 (limitation on the diffusion at steps 2 and 4)

The diffusion introduced by the $e_{i-1}e_{i-2}$ terms in the recurrence for steps 2 and 4 can sometimes be cancelled (if one of values e_{i-1} and e_{i-2} is 0). More precisely, let $(e_0^1, e_1^1, \dots, e_{15}^1)$ be the input to step 2:

Proposition 1: If for a given value i in $\{1, ..., 14\}$ we have $e_{i-1}^2 = e_{i+1}^2 = 0$ and if $e_{13}^1 \not\equiv i$; $e_{14}^1 \not\equiv i$; $e_{15}^1 \not\equiv i$; $e_{j}^2 \not\equiv i$ for j in $\{0, ..., 12\}$, then the impact of replacing the input value e_{i}^1 by a new value $e_{i}^1 + \Delta e_{i}^1$ such that $e_{i}^1 + \Delta e_{i}^1 \equiv e_{i}^1$, is limited to the output value e_{i}^2 (that means e_{i}^2 are not modified for $j \not\equiv i$).

Proposition 2: If $e_{14}^1 = e_0^2 = 0$ and if $e_j^2 \neq 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the input value e_{15}^1 by a new value $e_{15}^1 + \Delta e_{15}^1$ such that $e_{15}^1 + \Delta e_{15}^1 \equiv e_{15}^1$, is limited to the output value e_{15}^2 .

Similarly, let $(c_1^3, c_2^3, \dots, c_{15}^3)$ be the input to step 4:

Proposition 1': If for a given value i in $\{1, ..., 14\}$ we have $e_{i-1}^4 = e_{i+1}^4 = 0$ and if $e_{13}^3 \neq i$; $e_{14}^3 \neq i$; $e_{15}^3 \neq i$; $e_{j}^4 \neq i$ for j in $\{0, ..., 12\}$, then the impact of replacing the input value e_{i}^3 by a new value $e_{i}^3 + \Delta e_{i}^3$ such that $e_{i}^3 + \Delta e_{i}^3 = e_{i}^3$, is limited to the output value e_{i}^4 .

Proposition 2': If $e_{14}^3 = e_0^4 = 0$ and if $e_j^4 \neq 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the input value e_{15}^3 by a new value $e_{15}^3 + \Delta e_{15}^3$ such that $e_{15}^3 + \Delta e_{15}^3 \equiv e_{15}^3$ is limited to the output value e_{15}^4 .

2 Construction of two colliding messages

2.1 Construction of a partial collision

We first find two 128-bit blocks M_1 and M'_1 which hash values $H_1 = (\overline{c}, \frac{4}{8}, \dots, \overline{e}, \frac{4}{15})$ and $H'_1 = (\overline{c'} \ \frac{4}{8}, \dots, \overline{c'} \ \frac{4}{15})$ differ only by their right components $\overline{c} \ \frac{4}{15}$ and $\overline{c'} \ \frac{4}{15}$. We will later refer to this property in saying that M₁ and M'₁ realize a partial collision.

Our technique for finding M_1 and M_1 is the following: we search M_1 values such that $c_{14}^1 = 0$; $c_0^2 = 0$; $c_{14}^3 = 0$; $c_0^4 = 0$. The propositions 2 and 2' suggest that for such a message $M_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0)$, M_1 and the message $M'_1 = (e_8^0, ..., e_{14}^0, e_{15}^0 + 16)$ realize a partial collision with a significant probability (approximately 1/8).

There are two main steps for finding M_1 .

Step1 : Selection of
$$e_8^0$$
, e_{10}^0 , e_{12}^0 and e_{14}^0

Arbitrary (e.g. random) values are taken for e_{12}^0 and e_{14}^0 . The values of e_8^0 and e_{10}^0 are then deduced from these values by solving the following linear system:

$$\begin{cases} e_{14}^{1} = 0 & (1) \\ e_{0}^{1} = -1 & (2) \end{cases}$$

Proposition 3:
If
$$e_{13}^0 \equiv 14$$
 then $e_{14}^1 = 0$ and $e_0^2 = 0$ independently of the values of e_9^0 , e_{11}^0 , e_{13}^0 , e_{15}^0 .

Proof: This is a direct consequence of the definition of the g function.

 $\underline{\text{Step 2}}: \text{Selection of} \quad e_9^0, e_{11}^0, e_{13}^0, e_{15}^0$

The values of c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 are taken from Step 1.

We fix the values of $c_{11}^0 = 0$ and $c_{15}^0 = 0$. An arbitrary (e.g random) value is taken for c_{9}^0 . We first calculate the c_{12}^2 and c_{14}^3 values corresponding to the chosen value of c_{9}^0 , c_{11}^0 and c_{15}^0 and to the temporary value $c_{13}^0 = 14$. Based on these preliminary calculations, we "correct" the temporary value $c_{13}^0 = 14$ by a quantity Δc_{13}^0 , i.e. we replace the value $c_{13}^0 = 14$ by the value $c_{13}^0 = 14 + \Delta c_{13}^0$, and we leave the other input values unchanged. We denote by Δc_{1}^i ($0 \le i \le 4$; $0 \le j \le 15$) the corresponding variations of the intermediate variables in the H_1 calculation. We select Δc_{13}^0 in such a way that the quantity $c_{14}^3 + \Delta c_{14}^3$ (i.e the new value of c_{14}^3) is equal to zero with a good probability.

Proposition 4: If $e_{12}^2 \neq 0$ and $\frac{-e_{14}^3}{2^{4.7.7}e_{12}^2} \equiv 0$ and $e_j^2 \neq 13$ for $1 \le j \le 11$ then the above values of

, e_{15}^1 , e_0^2 and the value $\Delta e_{13}^0 = \frac{-e_{14}^3}{2^{4.7.7}e_{12}^2}$ lead to the three relations

$$\begin{cases} e_{14}^{1} + \Delta e_{14}^{1} = 0 & \text{(a)} \\ e_{0}^{2} + \Delta e_{0}^{2} = 0 & \text{(b)} \\ e_{14}^{3} + \Delta e_{14}^{3} = 0 & \text{(c)} \end{cases}$$

<u>Proof</u>: (a) is straightforward; (b) and (c) are direct consequences of the following relations, which result from the definition of the g function:

$$\Delta c_{j-2}^2 = 0$$
 for $0 \le j \le 12$; $\Delta c_{13}^2 = \Delta c_{13}^0$; $\Delta c_{14}^2 = c_{12}^2 \cdot \Delta c_{13}^2$; $\Delta c_{14}^3 = 2^{4.7.7} \cdot \Delta c_{14}^2$

We performed a large number n_1 of trials of step 1. For each trial of step 1, we made a large number n_2 of trials of step 2. The success probability of step 2, i.e the probability that the trial of a c_9^0 value leads to a message such that (a), (b) and (c) are realized is slightly less than 1/16 (since the strongest

condition in proposition 2 is : $\frac{-c_{14}^3}{2^{4.4.7}c_{12}^2} \equiv 0$). Therefore the probability that a step 2 trial leads to a message

 M_1 such that $c_{14}^1 = c_0^2 = c_{14}^3 = c_0^4 = 0$ is slightly less than $1/16 \cdot 2^{-16} = 2^{-20}$.

Moreover, the probability that such a message M_1 leads to a partial collision is basically the probability that none of the c_{i-3} mod 16 indices occurring in the calculation of c_0^2 to c_{15}^2 and c_0^4 to c_{15}^4 takes the value 15, which is close to 1/8. So, in summary, approximatively c_0^2 partial computations of the g function were necessary to obtain a suitable message c_0^2 to c_{15}^2 partial computations of the message c_0^2 message c_0^2 to c_{15}^2 and c_0^2 to c_{15}^2 to c_{15}^2 and c_0^2 to c_{15}^2 and c_0^2 to c_{15}^2 to c_{15}^2 and c_0^2 to c_{15}^2 and c_0^2 to c_{15}^2 to c_{15}^2 to c_{15}^2 and c_{15}^2 to c_{15}

2.2 Construction of a full collision using a partial collision

We now show how to find a 128-bit message $M_2 = (c_8^0, ..., c_{15}^0)$ such that the previously obtained hash values H_1 and H_1' (denoted in this section by $(c_0^0, ..., c_7^0)$ and $(c_1^0, ..., c_6^0, c_7^0) = (c_1^0, ..., c_6^0, c_7^0 + 16)$) respectively lead to the same hash value H_2 (when combined with M_2): $g(H_1, M_2) = g(H_1, M_2)$.

Our technique for finding M_2 is quite similar to the one used for finding M_1 and M'_1 . Let us denote by c_j^i (resp c_j^i) ($0 \le i \le 4$, $0 \le j \le 15$) the intermediate variables of the calculations of $g(H_1, M_2)$ (resp $g(H'_1, M_2)$).

We search M_2 values such that $e_6^2 = e_8^2 = e_6^4 = e_8^4 = 0$. The propositions 1 and 1' suggest that the probability that the 16-uples (e_0^4, \dots, e_{15}^4) and (e_0', \dots, e_{15}') differ only by their components e_7^4 and $e_7'^4$ which implies that the probability to have $g(H_1, M_2) = g(H_1, M_2)$ is quite substantial, approximatively 1/8.

There are two main steps for the search of M2:

<u>Step 1</u>: Selection of c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 , c_9^0 .

An arbitrary (e.g random) value is taken for c_{14}^0 . The values of c_8^0 , c_{10}^0 , c_{12}^0 are deduced from c_{14}^0 by solving the following linear system:

$$\begin{cases} c_{14}^{1} = 0 & (3) \\ c_{0}^{1} = -1 & (4) \\ c_{8}^{1} = -2^{8} & (5) \end{cases}$$

A preliminary calculation, where e_9^0 , e_{11}^0 and e_{15}^0 are set to the temporary value 0 and e_{13}^0 is set to the temporary value 14, is made. The obtained value of e_6^2 , denoted by δ , is kept.

Proposition 5: If e_8^0 , e_{10}^0 , e_{12}^0 , e_{14}^0 are solutions of (3), (4), (5) and if in addition the values $e_9^0 = p-\delta$, $e_{11}^0 = 0$, $e_{13}^0 = 14$, $e_{15}^0 = 0$ lead to intermediate values such that : $e_1^2 \mod 16$ is not in {9,11,13,15}; $e_2^2 \mod 16$ is not in {9,11,13,15}; $e_3^2 \equiv 9 \mod 16$; $e_4^2 \mod 16$ is not in {9,11,13,15}; $e_5^2 \mod 16$ is in {0,6,14}, then if we fix the value $e_9^0 = p-\delta$, for any value of $e_{13}^0 \equiv 14$ and for any value of $e_{15}^0 \equiv 0$ we have:

$$e_{14}^1 = 0$$
; $e_0^2 = 0$; $e_6^2 = 0$; $e_8^2 = 0$.

<u>Proof</u>: The proof of this proposition is easy. Finding the e_8^0 , e_{10}^0 , e_{12}^0 , e_{14}^0 and e_9^0 values satisfying the conditions of the above proposition is quite easy, and requires the trial of a few hundreds e_{14}^0 values.

Step 2: Selection of e_{11}^0 , e_{13}^0 , e_{15}^0

The values of e_8^0 , e_{10}^0 , e_{12}^0 , e_{14}^0 , e_9^0 are taken from Step 1; these values are assumed to realize the conditions of the above proposition.

An arbitrary (e.g random) value is taken for c_{11}^0 . A preliminary calculation is made, using the selected c_{11}^0 value and the temporary values $c_{13}^0 = 14$; $c_{15}^0 = 0$. The corresponding values of c_{12}^2 and c_{8}^3 are kept.

Based on these preliminary calculations, we "correct" the temporary value of e^0_{13} by a quantity Δe^0_{13} and we also consider new values $e^0_{15} + \Delta e^0_{15}$ for e^0_{15} . The variation Δe^0_{13} is selected in such a way that for any Δe^0_{15} value satisfying $\Delta e^0_{15} \equiv 0$, the new value $e^3_8 + \Delta e^3_8$ of e^3_8 is equal to e^3_8 with a substantial probability.

Proposition 6: If
$$e_{12}^2 \neq 0$$
 and $\frac{-2^8 - e_8^3}{2^{4.4.7} e_{12}^2} \equiv 0$ and e_j^2 mod 16 is not in (13,15) for 1≤j≤11 then for

any variation $\Delta c_{15}^0 \equiv 0$ on c_{15}^0 such that $c_{15}^2 + \Delta c_{15}^0 < p$ and $c_{15}^4 + \Delta c_{15}^0 < p$, the variation $\Delta c_{13}^0 = \frac{-2^8 - c_8^3}{2^{4.4.7} c_{15}^2}$ on the c_{13}^0 value leads to the following new values:

$$e_{14}^{1} + \Delta e_{14}^{1} = 0$$
; $e_{0}^{2} + \Delta e_{0}^{2} = 0$; $e_{6}^{2} + \Delta e_{6}^{2} = 0$; $e_{8}^{2} + \Delta e_{8}^{2} = 0$; $e_{8}^{3} + \Delta e_{8}^{3} = -2^{8}$.

We performed a number n_1 of trials of step 1. For each successful trial of step 1, we made a large number n_2 of trials of c_{11}^0 values at step 2. For those c_{11}^0 values satisfying the conditions of the above proposition, we made a large number n_3 of trials of new c_{15}^0 values such that $\Delta c_{15}^0 \equiv 0$. The probability that the trial of a new Δc_{15}^0 value leads to intermediate variables satisfying the four equations $c_6^2 = 0$; $c_8^2 = 0$; $c_8^4 = 0$; $c_8^4 = 0$ is basically the probability that randomly tried c_6^4 and c_5^4 values satisfy $c_6^4 = 0$ and $c_5^4 \equiv 6$; the order of magnitude of this probability is therefore $c_6^2 = 0$.

Moreover, the probability that a message M_2 satisfying the four equations $c_6^2=0$; $c_8^2=0$; $c_6^4=0$; $c_8^4=0$ leads to a full collision $g(H_1,M_2)=g(H_1,M_2)$ is basically the probability that none of the c_{i-3} mod 16 indices occurring in the calculation of c_0^2 to c_{15}^2 and of c_0^4 to c_{15}^4 takes the value 15, which is close to 1/8. So in summary approximatively c_0^2 partial computations of the g function are necessary to obtain a message c_0^2 giving a full collision.

2.3 Implementation details

The above attack method was implemented using a non-optimized Pascal program. The search for a collision took a few hours on a SUN3 workstation and less than an hour on a SPARC workstation. We provide in annex the detail of the intermediate calculations for two colliding messages M_1M_2 and M'_1M_2 , of two 128-bit blocks each.

Note that for many other values M''_1 of the form $(e_0^0, ..., e_{15}^0 + k.16)$ (k: an integer) of the first 128-bit block, the message M''_1M_2 leads to the same hash value as M_1M_2 : the observed phenomenon is in fact a multiple collision.

3 Conclusions

The attack described in this paper takes advantage of the two following weaknesses of the FFT-Hashing algorithm:

- the influence of the term e_{i-3} in the recurrence $e_i := e_i + e_{i-1}e_{i-2} + e_{e_{i-3}} + 2^i$ (mod p) on the

security of the algorithm is rather negative (see for example the method to obtain $e_6^2 = 0$ (or $e_8^2 = 0$) at step 1 of Section 2.2).

- as mentioned in Section 1.3, the diffusion introduced by the four steps of the algorithm is quite limited. In particular, the FT₈ Fourier transform acts only on half of the intermediate values (e_0 , ..., e_{15}),

namely the 8 values e_0 , e_2 , ..., e_{14} .

This suggests that quite simple modifications might result in a substantial improvement of the security of the FFT-Hashing algorithm.

4 Acknowledgements

The autors are greateful to Jacques BURGER (SEPT PEM, 42 rue des Coutures, BP 6243, 14066 CAEN, France) for the Spare implementation as well as useful discussions.

5 References

- [1]: C.P. SCHNORR; FFT-Hashing: An Efficient Cryptographic Hash Function; July 15, 1991 (This paper was presented at the rump session of the CRYPTO'91 Conference, Santa Barbara, August, 11-15, 1991)
- [2] : DAEMEN BOSSELAERS GOVAERTS VANDEWALLE : Announcement made at the rump session of the ASIACRYPT '91 Conference, Fujiyoshida, Japan, November 11-14, 1991)

		10	75E0			3210	3210	7013 B81B	7013	A787 5BF6	5BF6		9	75E0	5. 5.87 5.87 5.80	2A59	2A59	9E82 89CF	8 9 C.F	B9CF
		٥	8 9 09			404	V P60				9B8A		4 0 0 0		418A S				983F 8	983F 8
		3658	959E			365E	BA98 C 365E				E23C 9		7. C#						96 566	86 566
		0	Spic 9			440 3	B84C B													
		•	358 \$1					1 6CEA 2 A692	1 2F1A 2 5A7		5 8 6 4		8764		3813	Ψ α			9554	9554
	with	<	-				CDEF	1001 CC52	1001 CD52		3855		3855		3865 358		17A9 99A5	EA99 2708	2708	2708
		1 26A	328		9		4F72 F62E	4F76 SAFE	2466 3057	F18C	4508		4508	3284	C5BE 9804	C5C2	8879 CD5	4E20 5EF5	SEFS	SEFS
	M1 M2	807A	5202		75.67	807A	4567 807A	4569 156	4569	456B CDE2	CDE2		CDE2	5202	CDE2 5202	CDE4	CDE4 5402	E84C	AB53	AB53
	Σ	F95A	1537	. H.	123	F95A	10000 FB30	Appc	CFA9 B305	0 7DCA	7DCA	 1. H2	7DCA	1537	10000 FF01		E268 FF01	5551	0	•
	SECOND MESSAGE	H	#2 .	calculation of	i OH		step 1:	step 2:	step 1:	step 2:	H1 -	calculation of	H1 -	# 22 24	step 1: 1	step 2:	step 1:	3 tep 2:	н2 -	HASHED MESSAGE
ANNEX		0	6068 7550		4 3210	0	A 3210	9 7D13 5 B80B	7013 B808	. 5806	5856		58E6	75£0	58E6 75E0	2849 7389	2A49 73A9	9E72 89CF	89CF	8 9C.F
		5 E			7654		D98A 0	1089 4626	F3D7	FB99	988A		9B8A	6068	418A	0 38ef	E7C2 7FF2	0 983£	9838	983F
		0 365E	C 959E		BA 38	365E	BA98 365E	F49C 158A	F49C 158A	F6D2 E23C	£23C		£23C	959E	E23C 959E	6370 9A6E	6370 9A6E	9B86 995	995	566
		0 + + 0	3 5010		FEDC	440	3677	6CEA A692	2F1A 5A7	64F8 8F64	8564		9F64	5 01C	3E13 EF0	6501 8BBS	2 6 C C 3 7 C B	C82F 9554	9554	9554
	£		358		CDEF	0	CDEF 0	1001 CD52	1001 C052	91E1 3BES	3865		38ES	358	3BES 358	7A9 9A5	7A9 9A5	EA99	807	80
	with	26A	3284		89AB	26A	4F72 F62E	4F76 5AFE	2466 3057	F1BC 4508	4508		4508	3284	C58E 3	C5C2 1	8879 1 CD5 9	4E20 E	SEF5 2	SEFS 27
	1 H2	8078	5202		4567	807A	4567 807A		156	456B CDE2	CDE2 '		CDE2	5202 3	CDE2 C 5202 9	CDE4 C	CDE4 8	E84C 4	AB53 51	AB53 SI
	M - H1 H2	F95A	1537	: I#	123	F95A	10000 FB30		CFA9 4 B305	7DCA C	7DCA C		7DCA C	1537 5		0 0 0 Ņ			0 AB	. 0 AB
	GE	Ĭ	M2 =	calculation of !	- OH	. IH	ä .	.; .;	utep 1: O	step 2:	H1 - 71	calculation of H2	H1 - 7D	M2 = 15	step 1: 10000 FF01	step 2:	step 1: E26B FF01	step 2: 5551 0	H2 .	HASHED MESSAGE :
	-			0 1								5								ž