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Abstract—We present a practical cryptographic hash
function based on the Miyaguchi–Preneel construction,
which instead of using a block cipher as the main compo-
nent uses a modular matrix multiplication. Thus as the core
component it uses a compression function which is closely
related to the theoretical lattice based hash function consid-
ered by Goldreich, Goldwasser and Halevi. We show that by
suitable parameter choices we can produce a hash function
which is comparable in performance to existing deployed
hash functions such as SHA-1 and SHA-2.

I. Introduction

In the last few years a number of weaknesses have been
found in standardised hash functions such as MD4, MD5,
RIPEMD and SHA-1 [4], [26], [27]. All of these hash func-
tions are essentially derived from the same design and
are constructed using somewhat ad-hoc techniques. In
contrast, other areas of cryptography have replaced ad-
hoc construction with well defined sets of design princi-
ples. Examples include the wide-trail design strategy of
AES [8, Chapter 9], or the rigorous application of reduc-
tionist provable security techniques as in the context of
RSA-OEAP [3], [11]. While the SHA-2 family of hash func-
tions is not yet known to succumb to the recent attack
techniques, its design principles are so similar to SHA-1
that we have no guarantee an attack will not appear in the
near future.

Much is known theoretically about how to construct
hash functions from one-way functions, yet these theoreti-
cal results do not aid one in designing efficient and practical
realisations. One problem with previous attempts to de-
sign hash functions based on hard computational problems,
for example the MASH-1 algorithm [1], has been that the
result is not competitive in terms of performance. Even so,
interest in hash functions which are provably reducible to
hard computation problems has recently been reawakened,
see for example the hash function VSH [6] which is based
on the difficulty of factoring. VSH is faster than MASH-1,
but still significantly slower than standard hash functions.
The output block length is fixed to the size of an RSA-
modulus, although of course this may be truncated in an
actual application, and its design criteria mentions nothing
about pre-image resistance. Additionally, VSH raises the
question as to who actually generates the hard problem on
which the hash functions security is based, i.e. the prime
factorisation of the RSA-modulus.

In 1996, Goldreich, Goldwasser and Halevi [14] presented
a hash function whose collision resistance could be related
to the worst case of the problem of finding small vectors
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in lattices. In the tradition of provable security, it was
shown that any algorithm which found collisions for such
a function could be used to solve the problem of finding
short vectors in lattices. The reduction to the worst case
of this latter problem was made using ideas of Ajtai [2].

Clearly, when using the construction of Goldreich et. al.
in a practical hash function one would use their method as
a compression function and then extend the domain to an
arbitrary length using a construction like that of Merkle
and Damg̊ard [20], [9]. This construction provides a prov-
ably secure collision resistant hash function, under the as-
sumption that the compression function is itself collision
resistant. When combined with the technique of Goldre-
ich et. al. one obtains a collision resistant hash function
which can take arbitrary length inputs. Recent work show-
ing that the Merkle–Damg̊ard construction is weak in cer-
tain circumstances [16], [17] can be resolved with minor
alterations, see for example [7], [18].

The problem with the construction of a compression
function using the ideas of Goldreich et. al. is that, with
the parameters needed so as to reduce the underlying lat-
tice problem to the worst case scenario, the resulting hash
function is not very efficient. In addition it appears hard
to directly develop a hash function which meets a specific
security gaurantee required by the practical community,
for example if the output hash size is n bits in length then
it should require 2n/2 operations to find a collision. One
can show (see later) that collisions can be found in the
construction of Goldreich et. al. using 2n/3 operations, or
2n/4 operations if one is using the GGH construction with
the Merkle–Damg̊ard construction to extend the input do-
main.

However, one can take the idea behind the construction
of Goldreich et al. and try to obtain an efficient hash func-
tion whose security is related to finding short vectors in
a particular fixed lattice. One would then need to study
whether this lattice behaved as a random lattice, and that
the underlying hard problem was actually secure. In this
paper, we take this latter approach and present an effi-
cient (supposedly) collision resistant hash function whose
performance is comparable to that of SHA-2. The design
has been motivated by implementation quality, including
issues such as speed and memory footprint, and the ability
to fully utilise processor features available in current com-
puter architectures. We present this proposal for a hash
function simply to stimulate the community into consider-
ing hash function whose components are easy to analyse
mathematically.

This paper is organized as follows. In Section II we
present the LASH algorithm, then in Section III we present
the properties behind each component we have used and
we justify the design principles we have used. In Section
IV we present our preliminary overview of possible secu-



rity weaknesses. In Section V we give an overview of the
performance of the algorithm. In the Appendix we present
a more detailed mathematical analysis of the linear com-
ponent of our scheme, which is essentially the compression
function of Goldreich et. al.

We end this introduction by commenting on the name
LASH. LASH stand for a number of possible acronyms.

• Linear Algebra based Secure Hash : As the main com-
ponent is simply a matrix-vector product.

• LAttice based Secure Hash : Because invert-
ing/finding collisions in the linear component of the
hash function is closely related to the hard problem of
finding short/close vectors in lattices.

• Light-weight Arithmetical Secure Hash : Because the
design is very short and easy to remember.

II. LASH

LASH-x computes a x-bit hash from an input bit se-
quence of arbitrary length. There are four concrete pro-
posals:

Variant n m
LASH-160 640 40
LASH-256 1024 64
LASH-384 1536 96
LASH-512 2048 128

Where n is the size of the input to compression function
in bits, and m is the size of the chaining variable in 8-bit
bytes. We have for all versions that m = n/16.

A. Pseudorandom Sequence

Consider the following pseudorandom sequence. Start
with y0 = 54321 and iterate the following recurrance, based
on the Pollard generator,

yi+1 = y2
i + 2 (mod 231 − 1).

We define an additional sequence that results in reducing
yi to byte length:

ai = yi (mod 28)

The first ten members of this sequence are

a0 = 49, a1 = 100, a2 = 135, a3 = 237, a4 = 95,
a5 = 26, a6 = 139, a7 = 214, a8 = 163, a9 = 194.

B. Compression Function

We define a compression function f that takes in two
byte sequences r0, r1, . . . , rm−1 and s0, s1, . . ., sm−1 and
produces a new byte sequence t0, t1, . . . , tm−1. Algorithm
1 gives the LASH compression function, where we use ⊕
to denote the exclusive-or operator.

The compression function can be represented as

f(r, s) = (r ⊕ s) + fH(r‖s) (mod q),

where fH is the linear function obtained from multiplying
a matrix H, defined using the sequence a0, a1, . . . , above,
by the column vector (r‖s)t, considered as a bit vector.

Thus the compression function is based on a combination
of addition modulo 256 and xoring. This combination helps
defeat the attacks on simply using the Goldreich et. al.
construction on its own.

Algorithm 1 LASH Compression Function t = f(r, s) .

for i = 0, 1, . . . ,m− 1 do
ti ← ri ⊕ si

end for
for i = 0, 1, . . . , n do

if i < 8m then
x← b2−(7−(i mod 8))rbi/8cc mod 2

else
x← b2−(7−(i mod 8))s(bi/8c−m)c mod 2

end if
if x = 1 then

for j = 0, 1, . . . ,m− 1 do
tj ← tj + a((n+j−i) mod n) mod 256

end for
end if

end for
return t

C. Hashing the message

Let l be the length of the original message in bits. The
individual message bytes are v0, v1, v2, . . .. The message is
padded with a single 1 bit (in case of byte-aligned data, a
single byte with hexadecimal value 0x80). The rest of the
vi values are taken to be be zeros.

The message is cut into k = dl/8me blocks of m bytes
and fed to the compression function, and then a final trans-
form is performed, which involves applying the compres-
sion function to the chaining variable and an encoding of
l, to produce a message digest. Algorithm 2 describes the
overall hash function.

Algorithm 2 LASH

for i = 0, 1, . . . ,m− 1 do
ri = 0

end for
for i = 0, 1, . . . , dl/8me − 1 do

for j = 0, 1, . . . ,m− 1 do
si = vm×i+j

end for
r← f(r, s)

end for
for i = 0, 1, . . . ,m− 1 do

si ← bl/28ic mod 256
end for
r← f(r, s)
for i = 0, 1, . . . ,m/2− 1 do

ti = 16br2i/16c+ br2i+1/16c
end for
return t



III. Design Overview

In this section we go into more detail over the precise
design choices we have made. The goals of the design have
been as follows:

• To adopt the large-pipe strategy of Lucks [18] to
avoid problems with the Merkle–Damg̊ard construc-
tion. The final hash value being produced from the
large-pipe by taking the upper bits of each byte, these
being the bits which depend in the most non-linear
manner on the input values.

• To combine two forms of mathematical operation in
the compression function, arithmetic modulo 256 and
bitwise exclusive-or. Thus the compression functions
consists of two parts, a linear function (motivated by
the lattice based hash function of Goldreich et. al.
[14]) and a xoring of the chaining variable and the
next message block (motivated by the construction of
Miyaguchi–Preneel [21], [23]).

• To be able to reason about the ability of the linear
function to resist preimages and collisions.

• To be as simple and efficient as possible, particularly
aiming for application on as wide a range of platforms
as possible. Thus the hash function is byte oriented
and built out of components found on all processors
and which are easy to implement in hardware.

• To enable as much parallelism as possible, thus allow-
ing the hash function to exploit performance enhanc-
ing features in modern instruction sets.

• The hash function should be patent free, as such none
of the designers have taken out patents on its design.

A. Linear Function

In this subsection we consider the function considered
by Goldreich et. al. [14] as a basis for their theoretical
lattice based hash function.

Let L denote an n-dimensional lattice in Rn generated
by an integral basis matrix B, with discriminant ∆(L). We
denote by λ(L) the length of the shortest non-zero vector
in L and by λ(L,b) the length of the closest lattice vector
to the arbitrary vector b ∈ Rn. A binary (resp. ternary)
vector in the lattice L is defined to be a vector in L whose
coordinates are restricted to come from the set {0, 1} (resp.
{−1, 0, 1}). The set of all binary (resp. ternary) vectors in
Rn will be denoted by Bn (resp. Tn).

Let H denote an integral m×n matrix, and let q denote
some fixed integer. Note, in what follows one should not
think of q as being prime. We define a map fH by

fH : {0, 1}n −→ (Z/qZ)m

b 7−→ H · b (mod q) (1)

and a lattice LH by

LH = {x ∈ Zn : Hx = 0 (mod q)}. (2)

Since qZn ⊂ LH ⊂ Zn, it is clear that dim(LH) = n. If
the map fH is surjective, then there is an exact sequence

0 −→ LH −→ Zn H−→ (Z/qZ)m −→ 0.

This allows us to compute the discriminant of the ma-
trix LH ,

∆(LH) = [Zn : LH ] = #(Z/qZ)m = qm.

A basis matrix for the lattice H can be derived as follows.
First, form the Smith Normal Form (SNF) of H as

SH = UHV.

If we let r denote the rank of H, then the lattice LH is
spanned by the first r rows of V t. When the corresponding
diagonal entry si,i of S is not equal to one, we multiply
the corresponding row of V t by q/si,i (mod q). This r×n
matrix is then augmented with the rows of the n×n matrix
qIn. A basis from this spanning set can then be obtained in
the standard manner. We define BH to be the row-oriented
basis matrix obtained in this way.

Alternatively if fH is already known to be surjective
then a basis for the lattice can be derived by taking the
n× (n−m)-kernel matrix KH of H over the integers. For
convenience we write this as

K =
(

K∗

In−m

)
,

for some m × (n −m) matrix K∗. A basis for our lattice
LH can then be obtained from the rows of the matrix(

(K∗)t In−m

qIm 0

)
.

Goldreich, Goldwasser and Halevi [14] show that, for a suit-
ably chosen matrix H ∈Mm,n(Fq), if the map fH defined
by (1) is collision resistant, then it is hard to find small
non-zero ternary vectors in the lattice LH . More precisely,
they show that if m, n, and q satisfy

m log q < n <
q

2m4
, (3)

with q = O(nc) for some constant c > 0, then the difficulty
of finding collisions for fH is equivalent to the worst case
of the approximate shortest vector problem apprSVP in
a lattice of dimension m. Their proof builds on the work
of Ajtai [2], who proves the average case/worst case equiv-
alence of certain lattice problems.

Goldreich et. al. propose that the function fH is suit-
able as a cryptographic hash function. However, in practice
things are not so clear cut. As m and n go to infinity, con-
stants and even log factors may not be of great theoretical
importance. However, in practise a cryptographic system
is likely to employ lattices of dimension a few hundred,
or maybe a few thousand. In those cases, the constants
and log factors are significant. For example, an algorithm
that finds collisions in dimension n = 500 can be turned
into an algorithm to solve apprSVP in dimension m, but
only with m ≤ 11. Similarly, finding collisions in dimen-
sion n = 1000 gives an apprSVP algorithm in dimension
at most m = 20; and even dimension n = 10000 gives
an apprSVP algorithm in dimension at most m = 150.



Given the efficiency of LLL-type algorithms in low dimen-
sion, it thus appears that the practical security of hash
functions based directly on the compression function fH

must depend on the average case difficulty of solving Aj-
tai’s problem itself in high dimension, rather than on the
derived difficulty of solving worst case apprSVP in much
lower dimension.

If using the output of the linear function fH as the hash
value one does not achieve the concrete security level one
would want in practice. The output hash size is qm, and
so one expects in practice that the best method for finding
collisions will take time at least qm/2 operations. In Sec-
tions C that one can find collisions in the function fH in
time significantly shorter than this, and in Section D we
show an improved attack assume the function fH is used as
the compression function in a Merkle–Damg̊ard construc-
tion.

Despite not being able to rely on the asymptotic worst
case/average case analysis of [14], it is not hard to relate
the security of the function fH to the hardness of certain
problems in LH .

Proposition 1: (a) Inversion of fH is equivalent to
finding, for a given vector a ∈ Rn,a vector that differs
from a by a binary vector, that is, finding a vector x
satisfying

x ∈ LH and x− a ∈ Bn.

In particular, such a vector x always satisfies
‖x − a‖ ≤

√
n, and on average it will satisfy

‖x− a‖ ≈
√

n/2.

(b) Finding a collision for fH is equivalent to finding a
nonzero ternary vector in LH , that is, finding a vector
in the intersection

x ∈ Tn ∩ LH with x 6= 0.

In particular, such a collision-producing vector always
satisfies ‖x‖ ≤

√
n, and on average a collision gives a

vector x ∈ LH satisfying ‖x‖ ≈
√

n/2.
This result appears in [10] and [14]. For completeness of
the current paper, we include the elementary proof in Ap-
pendix A. We have made the conservative assumption
that solving apprSVP for the lattice LH yields a colli-
sion for fH , but this is actually only true if the solution is a
ternary vector. A detailed analysis using standard assump-
tions, e.g., assuming that the collection of lattices {LH}
satisfies the Gaussian heuristic (cf. [15], [19]), yields a more
precise statement. One finds that for the suggested LASH
parameters, solving apprSVP in LH to within a factor of
approximately 2.5 is likely to yield a ternary vector, and
hence a collision of fH . In the opposite direction, solving
apprSVP in LH to within a factor of (say) 1.8 is unlikely
to yield a collision, since almost all vectors of this size
in LH are not ternary vectors. See Appendix C for details.

We now turn to issues as to how we selected the precise
function fH used in our construction, we therefore need to
select m, n, q and the matrix entries of H.

We first look at the values (m,n, q):

• Due to the fact that finding collisions in fH is easier
than the naive qm/2, we take m to be larger than one
needs in our final hash function output. This is also
useful to defeat various other generic attacks on hash
functions and is consistent with the advice of Lucks
[18].

• It turns out to be convenient in our chaining algorithm
to select n = 2m log2 q.

• Whilst a value of q = 232 is more likely to place us
in the range of the inequality (3), we have found via
various experiments that since the output size of the
hash function is fixed (and so m is limited), a harder
lattice problem is produced if q is smaller. Hence, we
select q = 28.

All that remains is to define the particular linear func-
tion fH that we shall use, i.e., we need to describe the
m× n matrix H. We take H to be the m-by-n circulant
matrix associated to the sequence a0, . . . , an generated by
the earlier PRNG,

H =


a0 an−1 an−2 . . . a2 a1

a1 a0 an−1 . . . a3 a2

...
. . .

...
am−1 am−2 am−3 . . . am+1 am

 .

The reasons for this choice are as follows. Firstly, the use
of a circulant matrix allows more efficient implementations
of our function fH , and deriving the entries via a pseudo-
random number generator allows us to reduce the memory
requirements of our hash function. The choice of p in the
Pollard generator is made to enable a sequence with pe-
riod greater than the largest value of n and so

√
p should

be greater than the largest value of n chosen. In addi-
tion we selected a p for which modular reduction can be
performed efficiently. The non-linearity of the generator is
crucial in creating a matrix for which the associated lattice
problem that is hard to solve. For example, we have found
that using a linear-congruential PRNG instead of the Pol-
lard PRNG results in a compression function that is easy
to break.

B. Compression Function

Recall, the compression function for LASH is then de-
fined from the m-byte chaining variable r and the next
m-byte block s, via

f(r, s) = (r ⊕ s) + fH(r‖s) (mod q).

The compression function is highly motivated by the con-
struction of Miyaguchi–Preneel [21], [23], which is of the
form

f(r, s) = (r ⊕ s)⊕ Eg(r)(s),

for a block cipher Ek(m) and a function g which takes
inputs the size of the chaining variable and outputs keys
for the block cipher.

Thus we are treating the function fH as equivalent to
a block cipher with key r and message s. We are not
claiming that the function fH can be used as a block cipher.



Hence, the “proof of security” of the Miyaguchi–Preneel
construction [5] does not apply in this situation.

However, the function fH does have some interesting
properties which it shares with a block cipher, naively

• Given an output fH it is hard to invert, as shown in
Proposition 1.

• It is hard to find collisions in the function fH , again
as shown in Proposition 1.

C. Final Transformation

In the final transform we need to compress the 8m bit
chaining variable down to the output hash value of 4m
bits. Recall that each byte of the chaining variable has
been obtained by performing a lot of additions modulo
q = 256, which have been dependent on the message bits.

To compute the final hash value we select the upper four
bits of each byte of the chaining variable and concaternate
them together. This produces an output of the correct size.
The reason for taking the upper four bits, is that due to the
nature of addition modulo q these are going to be the bits
which are affected in the most non-linear manner due to
the effect of carry propogation in the addition operations.

IV. Additional Security Considerations

The general structure of LASH, having only linear com-
ponents, easily leads one to suspect that it is directly vul-
nerable to differential and linear cryptanalysis. LASH has
gone through several evolutionary stages after the idea of a
lattice-based hash function was first considered. The cur-
rent version is a result of combining the traditions of prov-
able complexity-theoretic security with symmetric crypt-
analysis.

In determining the security of LASH against these at-
tacks, we note that as a fully parameterisable hash func-
tion (message block size, state size, and hash result size
can all be flexibly chosen), simulation of attacks against
LASH is straightforward and meaningful. If an attack can
be successfully mounted and simulated on reduced variants
of LASH, and the asymptotic behavior of the security as
a function of various parameters established, concrete ev-
idence about the security of full-size variants is obtained.
This flexibility also makes it easy to create larger versions
of LASH if weaknesses are found in the current versions.
This is a clear advantage of LASH over many hash function
designs with a more rigid, block cipher - like structures.

A. Differential Cryptanalysis

A small input difference (in either the chaining variable
and/or the message block) will result in a very large differ-
ence in the hash function state. Differential trails are very
wide. The propagation of differentials is further amplified
in final iteration (which does not use message bits), making
all output bits differentially dependant on all input bits.

We conjecture that the simple and understandable struc-
ture of LASH will make it difficult to find differential
anomalies such as the so-called necessary conditions ex-
ploited by Wang et al in their attacks on MD5, SHA-1,
and other hash functions [26], [27], [28], [29].

B. Linear Cryptanalysis

All components of the LASH compression function are,
in some sense, linear. Furthermore, if we consider a matrix
H ′ that contains the least significant bits of H, then the
product function H ′ ·b is a linear equation in F2 and indeed
H ′ is invertible with a significant probability. This can be
exploited in some attacks, as is shown in Section D. These
attacks are difficult to extend to the full version of LASH,
however.

It is unlikely that classical linear cryptanalysis (involving
the parity of subsets of bits) can be applied on LASH.

C. Generalized Birthday Attack

Wagner’s method for solving the generalized birthday
problem [25] can be applied to the GGH construction. We
will give a brief description of the algorithm and its limi-
tations, a more detailed discussion is given in Appendix B.
Using the GGH function fH on its own implies we can find
collisions in O(qm/3) operations as opposed to the O(qm/2)
operations one would want in practice from a hash func-
tion.

Although improvements to this basic version of the at-
tack can be made, this attack does not seem to be applica-
ble to the internal fH function used in LASH, due to the
ratio between the message block size and the size of the in-
ternal state. This motivates our choice of a large chaining
variable and our output transformation. Our use of the
Miyaguchi–Preneel construction, as opposed to using the
function fH directly also helps defeat this attack.

D. A Hybrid Attack

We will outline a hybrid attack that combines cycle-
based collision finding techniques with linear algebra and
a time-memory trade-off against the GGH function ap-
plied directly to multi-block messages using the Merkle–
Damg̊ard constuction, i.e. Lash with a different compres-
sion function, i.e. the function fH as the compression func-
tion, and no output transform.

The general strategy of the attack is to try to select two-
block messages in a way that forces a cycle-based collision
finding algorithm such as [22] into a smaller cycle, thus pro-
ducing collisions faster. If the outputs belong to a subset
S of possible outputs, collision search will have O(

√
| S |)

complexity, assuming that the message selection process is
O(1).

The messages are chosen as follows. The first block of
the message contains the output of the previous iteration
in the collision finding algorithm. The message bits in the
second block are chosen in a way that causes a number
of bits in the internal state of the hash function be to
zero, hence forcing the final output to a smaller subset of
possible outputs. The algorithm for selecting the second
message block requires O(1) time. The message selection
algorithm is as follows:

1. Since carry propagation in addition is from least sig-
nificant bits towards higher bits, H · b (mod 2) is in
fact a system of linear equations in F2, independent



of the 7 higher bits in each byte of H. Using simple
linear algebra operations in F2, bit 0 in each of the
m state bytes can be forced to zero by selecting m
message bits appropriately. This is an O(1) step.

2. A precomputed lookup table is used to force further
c bits to zero. The table has 2c entries and uses m+ c
message bits (since the table entries must also have
least significant bits as zeros). Each lookup requires
O(1) time. The precomputation phase requires O(2c)
time.

Thus, by selecting 2m+ c message bits in the second block
in a certain way, m + c bits in the 8m-bit internal state
are forced to zero. The offline complexity of the attack is
O(2c) and the collision search algorithm is expected to find
a collision in O(2

1
2 (7m−c)) steps.

First consider the hypothetical case where LASH would
have the standard Merkle-Damg̊ard structure. In this case
the internal state would have the same size as the final
output, i.e. 8m bits. If we choose c = 7

3m ≈ 2.33m,
the overall complexity of the algorithm will be O(22.33m),
which is significantly less than O(24m) expected by direct
application of the birthday paradox. However, since the
internal state of LASH is twice as wide as the final output,
the security goal of LASH is O(22m). This is the rationale
behind the final transformation of LASH.

We note that it is possible to also force bit 1 of each byte
to zero if the message block is large enough so that addi-
tional m2 message bits can be selected. This is why a rel-
atively short message block size is being used (larger mes-
sage blocks would have resulted in greater hashing speed).

V. Implementation

A. Storage of Pseudorandom Data

We have several options as regards storage of the pseu-
dorandom matrix. A compromise seems the most attrac-
tive option, that is to store only part of the matrix. Due
the circulant nature, there is no real benefit in storing the
whole matrix since each row is essentially a rotation of the
first. Therefore, we can simply store one row and be able
to access all the required elements by shifting a window
from right to left; at each of n steps, the window contains
the elements for the corresponding column.

The circulant nature of the matrix has an additional
property in that neighbouring columns differ only in one
element. Therefore, one can imagine storing only a single
column of the matrix and updating it by computing a new
entry at each step. This creates a computational overhead
in that we need to generate a total of n matrix entries, but
offers a saving in storage overhead since there are far less
rows than columns in the matrix.

B. Parallelism in Compression Function

The basic algorithm for executing the compression func-
tion offers parallelism in two directions. Firstly, since
they are essentially unrelated, one can operate on different
columns of the matrix at once, summing the partial sums
to form the final result. Secondly, one can add different el-

ements of a given column into the state in parallel. These
two method combine to offer a high degree of scalability.
This is easy to exploit in hardware or where a dedicated
SIMD instruction set is available.

We can manually apply a similar technique on processors
which do not have SIMD instruction sets but do have a
native word size greater than 8-bits. For example, on a
32-bit processor we can pack four 8-bit sub-words into one
32-bit value. We cannot add packed values using native 32-
bit addition since carries from one sub-word may overflow
into another. However, we can construct a suitable method
for addition by masking the top bits of the packed bytes to
prevent carries before using 32-bit addition and patching
up the result. The resulting packed addition of x and y to
produce the result r can be described as

x′ ← x ∧ 0x7F7F7F7F
y′ ← y ∧ 0x7F7F7F7F
r′ ← x′ + y′

r ← ((x⊕ y) ∧ 0x80808080)⊕ r′

with a similar construction possible for other word sizes.

C. Specialisation of Compression Function

Considering how the compression function is used to pro-
cess arbitrary length messages, the first and last invoca-
tions can be considered special. In the first invocation the
chaining variable is zero; in the last invocation the message
block is mostly zero with only a few bytes representing the
message length. In both cases, only a small portion of the
compression function input is relevant and in the first case
the initial mixing stage is redundant since ti = ri⊕ si = si

for all i.
The saving afforded from capitalising on these features

by using specialised versions of the compression function
is amortised over all invocations. For short messages, the
saved computation can be significant since the first and
last invocations of the compression function comprise the
majority of the total.

D. Results

We recompiled and tested publicly available source code
for the SHA1 and SHA2 hash functions [24], [12], [13],
as well as preliminary implementations of LASH, on our
experimental platform. This platform housed a 2.8 GHz
Pentium 4 processor running the 2.4.21 Linux kernel. All
source code was written in C, making use of GCC 4.0.1
and the intrinsics feature to access the SIMD functionality
of the processor. Measurement of the number of cycles
elapsed during execution was performed using the rdtsc
instruction in the normal way.

Table I shows the results of the experiment and com-
pares SHA1 and SHA2 with equivalent parameterisations
of LASH. The results were averaged over a large number of
random inputs; it is vital to note that LASH performance
is variable depending on the input. Also note that the stor-
age requirement is intended to detail only the amount of
pre-computed material rather than the total memory foot-
print. The results show an encouraging ratio between the



TABLE I

A table comparing the performance of LASH with

standardised hash functions with comparable

parameterisations.

Name Implementation Storage Cycles/byte
SHA1-160 without SIMD [24] 0 bytes 26.29
SHA1-160 with SIMD [12] 64 bytes 16.86
LASH-160 without SIMD, store all matrix 25600 bytes 689.64
LASH-160 without SIMD, store one row 640 bytes 774.42
LASH-160 with SIMD, store all matrix 25600 bytes 392.83
LASH-160 with SIMD, store one row 640 bytes 523.26
SHA2-256 without SIMD [24] 256 bytes 55.16
SHA2-256 without SIMD [13] 288 bytes 31.34
SHA2-256 with SIMD [12] 256 bytes 45.20
LASH-256 without SIMD, store all matrix 65536 bytes 859.83
LASH-256 without SIMD, store one row 1024 bytes 1027.74
LASH-256 with SIMD, store all matrix 65536 bytes 344.81
LASH-256 with SIMD, store one row 1024 bytes 597.01
SHA2-384 without SIMD [24] 640 bytes 124.57
SHA2-384 without SIMD [13] 704 bytes 117.45
LASH-384 without SIMD, store all matrix 147456 bytes 1078.58
LASH-384 without SIMD, store one row 1536 bytes 1355.09
LASH-384 with SIMD, store all matrix 147456 bytes 805.47
LASH-384 with SIMD, store one row 1536 bytes 1090.41
SHA2-512 without SIMD [24] 640 bytes 124.98
SHA2-512 without SIMD [13] 704 bytes 117.52
LASH-512 without SIMD, store all matrix 262144 bytes 1351.39
LASH-512 without SIMD, store one row 2048 bytes 1730.14
LASH-512 with SIMD, store all matrix 262144 bytes 1036.70
LASH-512 with SIMD, store one row 2048 bytes 1220.54

fastest implementations of LASH versus SHA1 and SHA2.
In particular, LASH is potentially only 30 times slower
than SHA1 with the ratio improving significantly for SHA2
with LASH being only 10 to 20 times slower. This is com-
parable at the lower security levels with an implementa-
tion of VSH, although this clearly depends on how large
one takes the modulus in ones VSH implementation.

VI. Test vectors

We provide test vectors for each variant of LASH. The
vectors are computed over two test messages. Message A
consists of three lower-case ASCII characters “abc”, whose
corresponding hexadecimal bytes are 61 62 63. The mes-
sage length is 24 bits. Message B consists of 100000 rep-
etitions of the ten ASCII characters “0123456789”, whose
corresponding hexadecimal bytes are 30 31 32 33 34 35
36 37 38 39. The message length is 8 million bits.
LASH-160(A) =

67 58 25 ec f3 ba f5 c9 4f fe 38 a1 5b c0 ab 40
77 9b 96 4d

LASH-160(B) =
43 68 df 33 4f ce b9 e7 99 d2 77 22 12 fc 44 f2
ce ec 04 1e

LASH-256(A) =
39 ff b7 84 0b 6b 3b 71 89 fc 5e dc 9e 24 33 9e
77 8c f4 be bf 94 df 00 c3 53 d0 bf 37 30 b3 2f

LASH-256(B) =
e9 57 75 d4 53 d6 36 1e 3c 9c 88 8c dc eb 3c 8a
ab 49 cd ad 43 56 b5 ba 97 98 38 6b b6 dc 95 e9

LASH-384(A) =
11 d0 9c 55 cb ba 6f 31 10 bf 87 7f ab cf b6 30
10 52 0c 30 76 e1 dc d2 7b af dc a8 38 5e 25 0e
4e fa 42 97 a1 6c 69 23 b9 a1 33 3d 8d ca 1d a7

LASH-384(B) =
41 7e cb d6 dd 54 2f 82 e4 29 e4 ec 93 e6 c0 78
3d 81 7c 5e 38 4d d2 e4 97 61 6c b1 0f 32 6e b6
10 5c ef 9e 32 ba 2f 97 9b 5e 94 8b 31 e7 8c 75

LASH-512(A) =
c5 bb 7c f4 c1 ca c6 38 43 94 66 65 7c 8d ed 14
bb ab f8 28 e4 b3 69 99 86 11 64 b9 79 2d 88 fd

48 eb 0f aa aa f4 e0 33 19 fc bd 4d 4e 5c 2c 06
82 5a 85 97 35 98 69 dd 1e 84 0b 12 15 96 19 c8

LASH-512(B) =
07 02 25 1f 85 b4 5a a7 78 0d f4 9d 69 b2 de b0
20 12 c5 e3 20 46 7e 3b 04 a3 4f fa 75 a0 19 0d
c8 f5 41 20 c2 33 a5 08 38 26 a8 e6 47 68 2c 5b
59 c0 9e d2 52 c7 1e 81 66 f6 2e 59 ef fb 24 57
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Appendices

A. Proof of Proposition 1

For (a), suppose that we are given b ∈ (Z/qZ)m and
want to solve fH(y) = b. We begin by finding any vector
a ∈ Zn satisfying Ha ≡ −b (mod q). This is easy to do,
since the congruence Ha ≡ −b has more variables than
equations. Of course, we are assuming that there is at least
one solution. Now the following problems are equivalent:

• Solve fH(y) = b.
• Find y ∈ Bn satisfying Hy = b. (Since the domain of

fH is the set of binary vectors.)
• Find y ∈ Bn satisfying H(y + a) = 0. (Since b =
−Ha.)

• Finding x ∈ LH satisfying x − a ∈ Bn (Letting x =
y + a.)

This completes the proof of (a).
For (b), we first observe that if fH(x) = fH(y), then

x − y ∈ LH and clearly x − y is ternary. Conversely,
suppose that z ∈ LH is a ternary vector. Then z can be
written as a difference z = x − y of binary vectors, so
fH(x) = fH(y) and we have produced a collision.

Binary and ternary vectors of dimension n have length
at most

√
n, and the average length of a binary vector

is
√

n/2. The average length of a ternary vector is
√

2n/3,
but the average length of the difference of two binary vec-
tors (which is how the ternary vectors are being produced)
is
√

n/2.

B. Finding collisions in the Goldreich et. al.
construction in less than qm/2 operations

In this section we describe in detail the attack outlined in
Section C. In particular we show that for fixed parameter
sizes one does not achieve the security one would hope for
from the Goldreich et. al. construction.

The attack, pointed out to us by an anonymous referee
for an earlier version of this manuscript which does not
use the Miyaguchi–Preneel scheme or the post processing
step, finds a binary vector in the lattice associated to fH

in time qm/3 and thus can be used to break the collision
resistance of a hash function based soley on the Goldreich
et. al. construction.

The attack works as follows: We assume fH is surjective
and write down the basis of the associated lattice as the

rows of the matrix(
(K∗

H)T In−m

qIm 0

)
.

We now consider only vectors of the form x = (y, 0) where
y ∈ Bn−m. The vector x produces a lattice vector of the
form (x(K∗

H)t,x). If try to solve x(K∗
H)t (mod q) = 0

then the resulting lattice vector will be a binary vector in
the lattice.

However, solving x(K∗
H)t (mod q) = 0 has been studied

by Wagner [25] in terms of a k-sum generalisation of the
birthday paradox. This is done as follows: We divide the
n−m row vectors of (K∗

H)t into four lists and place form
qm/3 combinations of the row vectors in each list. Then
we use the technique of Wagner to find a subset sum equal
to zero modulo q. We expect such a subset sum to exist
since the values of the top m components of (K∗

H)t are
essentially random elements modulo q. Thus the running
time is qm/3, which is the time to produce the lists and the
time to run Wagner’s algorithm.

One can extend this method by constructing a list of
2d partial matrix-vector products by using d message bits
in a message block and running through all combinations
(i.e. subset sums of rows of (K∗

H)t). By choosing another
d message bits, another list of equal size can be produced.
It is possible to merge these distinct lists in essentially
O(2d) time to produce a third list of equal size that has the
property of having d selected bits as zero. The process can
be recursively applied in a tree-like fashion to produce a
collision in kd bits of the internal state with the selection of
2kd message bits and O(2k+d) effort in optimal conditions.

C. Ternary Vectors in Lattices

In this section we develop the tools needed to analyze
whether solutions to an approximate shortest vector prob-
lem in a lattice L ⊂ Zn are likely or unlikely to be ternary
vectors. This section aims to present an analysis on how
hard it is to either invert or find collisions in the internal
function fH via lattice basis reduction. Before commenc-
ing we reiterate that finding collisions or inverting fH is not
sufficient to break LASH due to the use of the Miyaguchi–
Preneel construction.

A. Which Balls Contain Many Ternary Lattice Points?

Let Tn be the set of ternary vectors of dimension n as
usual, and let Bn(R) be the ball of radius R centered at 0
in Rn. If R is small, than most of the integral lattice points
in Bn(R) will be ternary vectors, while if R is large, then
few of them will be ternary. We would like to determine
a critical value Rn at which the ternary vectors cease to
predominate. This should be roughly the value R such
that the number of ternary vectors of norm at most R is
equal to the volume of the ball of radius R, i.e., Rn solves
the equation

Vol(Bn(R)) = #
(
Tn ∩Bn(R)

)
.



Using the formula for the volume of a ball and the counting
formula for ternary vectors, we see that Rn solves

πn/2

Γ(n/2 + 1)
Rn =

bR2c∑
d=0

(
n

d

)
2d. (4)

The sum on the righthand side of (4) is a step function,
so the equation (4) tends to have several solutions. For
example, if n = 100, then (4) has 14 solutions ranging
from 4.992 to 6.087. Although this does not give an exact
solution, it tells us that a ball of radius 5 in R100 con-
tains mostly ternary lattice points, while a ball of radius
(say) 10 contains proportionally very few ternary lattice
points. Table II gives the largest, smallest, and average
solutions to (4) for a range of dimensions.

TABLE II

Solutions to Vol(Bn(R)) = #
`
Tn ∩Bn(R)

´
n Rmin

n Rmean
n Rmax

n

50 3.15042 3.90777 4.58992
100 4.99171 5.55618 6.08738
150 6.32237 6.81316 7.28238
200 7.48077 7.90118 8.30731
250 8.48252 8.83002 9.16873
n Rmin

n Rmean
n Rmax

n

300 9.37782 9.69343 10.0022
350 10.1947 10.4858 10.7715
400 10.9082 11.2014 11.4894
450 11.6179 11.8743 12.1269
500 12.2867 12.5294 12.7689

It is clear from Table II that Rmean
n does not grow linearly

with n. For our data, the regression line of log(Rmean
n )

versus log(n) is

log(Rmean
n ) ≈ 0.50634 log(n)− 0.6173 (5)

with correlation coefficient 0.999996.
This suggests that Rn ≈ c

√
n. We next relate the sum

on the righthand side of (4) to a binomial distribution and
use a normal approximation to prove the validity of this
guess and find an asymptotic value for c.

Proposition 2: For large values of n, the equation

πn/2

Γ(n/2 + 1)
Rn =

∑
0≤d≤R2

(
n

d

)
2d (6)

has a solution R satisfying R ≈ 0.4332
√

n. (This may be
compared with the experimental value R ≈ 0.54 · n0.506

given by (5).)
Proof: For any r > 0,∑

0≤d≤r

(
n

d

)
2d = 3n

r∑
d=0

(
n

d

)(
2
3

)d(1
3

)n−d

is 3n times the probability that a binomial distribution
(with probabilities 1/3 and 2/3) is smaller than r. If n is

large, we can approximate this probability using the nor-
mal distribution

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt

=

√
2
π
· 1
|x|

e−x2/2
(
1 + O(1/x2)

)
for x < 0.

Thus

1
3n

∑
0≤d≤r

(
n

d

)
2d =

r∑
d=0

(
n

d

)(
2
3

)d(1
3

)n−d

∼ Φ

(
r − 2n/3√

2n/9

)
as n→∞.

To ease notation, we let r = αn and set β = (3α− 2)/
√

2,
so the above quantity is Φ(β

√
n).

Using the elementary asymptotic expansion for Φ(x)
(valid for x < 0) and Sterling’s formula to approxi-
mate Γ(x), the equation (6) that we are trying to solve
(with R =

√
r =
√

αn) becomes

(2πer/n)n/2 ≈ 3nΦ(β
√

n)

(2πeα)n/2 ≈ 3n ·
√

2
π
· 1
|β|
√

n
· e−β2n/2

Taking nth roots and letting n go to infinity gives the equa-
tion √

2πeα = 3e−β2/2

to be solved for α, where recall that β = (3α − 2)/
√

2.
The numerical solution is α ≈ 0.18762, so we find that the
solutions R to (6) are given approximately by R =

√
αn ≈

0.4332
√

n.

B. Which General Lattice Problems Have Many Ternary
Solutions?

Let L ⊂ Zn be a lattice of dimension n and let λ(L) de-
note the length of a shortest nonzero vector in L. Propo-
sition 2 suggests that if λ(L) is significantly smaller than
Rn ≈ 0.4332

√
n, then most solutions to apprSVP will be

ternary vectors, but if λ(L) is significantly larger than Rn,
then only a small proportion of the solutions to apprSVP
will be ternary vectors. Combining this observation with
the value of λ(L) given by the Gaussian heuristic yields
the following result.

Proposition 3: Let L be a class of lattices for which the
Gaussian heuristic is valid and fix ε > 0. Then for L ∈ Ln,
solutions v ∈ L of apprSVP satisfying

‖v‖ < (1− ε) · 1.79
Disc(L)1/n

· λ(L)

are quite likely to be ternary vectors, while solutions v ∈ L
of apprSVP satisfying

‖v‖ > (1 + ε) · 1.79
Disc(L)1/n

· λ(L)



are unlikely to be ternary vectors.
In particular, if Disc(L) is significantly larger than 1.79n,

then even a shortest vector in L (i.e., a solution to SVP)
is unlikely to be a ternary vector.

Proof: The Gaussian estimate says that the shortest
nonzero vector in a “typical lattice” has length

λ(L) ≈
√

n/2πeDisc(L)1/n.

(See, e.g., [15], [19].) Solving apprSVP in L yields a vector
of length Cλ(L) for some C ≥ 1. Proposition 2 says that
this vector is quite likely to be a ternary vector if Cλ(L) <
0.4332(1−ε)

√
n and that it is not very likely to be a ternary

vector if Cλ(L) > 0.4332(1+ ε)
√

n. Thus the critical value
for C is

C =
0.4332

√
n

λ(L)
≈ 0.4332 ·

√
2πe ·Disc(L)−1/n

≈ 1.79 ·Disc(L)−1/n.

C. Which Lattice Problems Arising From fH Have Many
(or Mostly) Ternary Solutions?

If we are to base a hash function upon the linear func-
tion fH , then we would want the difficulty of finding binary
(resp. ternary vectors) in LH to be at least as hard as in-
version (resp. finding collisions) of fH via generic methods.
An interesting aspect of the lattices we shall use is that for
a fixed output size of the linear function, the value ∆1/n

of the associated lattice tends to one as we increase the
dimension of the lattice, i.e. the input block size of the
linear function.

As indicated by Proposition 1, the ability of finding col-
lisions in fH depends on the difficulty of finding special
sorts of short vectors in the circulant lattice LH . The
NTRU cryptosystem [15] is also based on the difficulty of
finding short vectors in certain lattices (called convolution
modular lattices in [19]) that are built up out of circulant
matrices. However, the matrices (and lattices) underlying
LASH are rather different from those underlying NTRU,
so the associated lattice problems are also different.

We now apply the results of the previous section to the
lattices LH used by LASH. Recall that dim(LH) = n and
Disc(LA) = qm. Notice that if we make the assumption
that qm < 2n, which is required if fH is to be a compression
function, then 1 < Disc(LH)1/n < 2.

Proposition 4: Assume that the Gaussian heuristic holds
for the LASH lattices (2).

(a) If qm > 1.8n, then solving apprSVP in LH is un-
likely to give a ternary vector.

(b) If qm < 1.78n, then solving apprSVP in LH to
within a factor of 1.79/qm/n is quite likely to give a
ternary vector.

Proof: This is immediate from Proposition 3 using the
values dim(LH) = n and Disc(LA) = qm.

Finally, we apply Proposition 4 to the specific LASH
parameters. In all cases we find that the LASH lattice is

likely to contain many ternary vectors. The crucial quan-
tity is the approximation factor 1.79/qm/n, which tells us
how closely we need to solve apprSVP in order to (proba-
bly) find a ternary vector. The conclusion is that in order
to find a collision in the linear function for the suggested
parameters, it is probably necessary to find a vector in LH

that is no more than about 2.5 times as long as the shortest
nonzero vector.

However, we note that finding collisions in the linear
function fH is not sufficient to find collisions in LASH it-
self.


