
25 Years of Cryptographic Hardware Design

Çetin Kaya Koç

City University of Istanbul &
University of California Santa Barbara

koc@cs.ucsb.edu

http://cryptocode.net

koc@cryptocode.net

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV



25 Years of Cryptographic Hardware Design

• 1975-1977: Invention of Public-Key Cryptography

• Diffie-Hellman & RSA Algorithms

• Publication Dates: Nov 1976 & Feb 1978

• First hardware implementation:

R. L. Rivest. A Description of a Single-Chip Implementation of the RSA
Cipher. Lambda, vol. 1, pages 14-18, 1980.

• In 1984, I was a graduate student at UCSB’s ECE Department

• My interest started with Rivest’s hardware paper

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 1



Essential Milestones

• This talk gives a brief summary of advanced algorithms for creating better
hardware realizations of public-key cryptographic algorithms: Diffie-
Hellman, RSA, elliptic curve cryptography

• Essential milestones:

– Naive algorithms, 1978-1985
– Montgomery algorithm, 1985
– Advanced Karatsuba algorithms, 1994
– Advanced Montgomery algorithms, 1996
– Montgomery algorithm in GF (2k), 1998
– Unified arithmetic, 2002
– Spectral arithmetic, 2006

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 2



RSA Computation

• The RSA algorithm uses modular exponentiation for encryption

C := Me (mod n)

and decryption
M : Cd (mod n)

• The computation of Me mod n is performed using exponentiation
heuristics

• Modular exponentiation requires implementation of three basic modular
arithmetic operations: addition, subtraction, and multiplication

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 3



Diffie-Hellman Computation

• Similarly, the Diffie-Hellman key exchange algorithm executes the steps

RA := ga (mod p)

RB := gb (mod p)

R′

B := Rb
A = gab (mod p)

R′

A := Ra
B = gba (mod p)

between two parties, Alice & Bob

• These computations are also modular exponentiations, requiring modular
addition, subtraction, and multiplication operations

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 4



NIST Digital Signature Algorithm

• The signature computation on M and k is the pair (r, s)

r := (gk mod p) mod q

s := (M + xr)k−1 mod q

• The signature verification

w := s−1 mod q

u1 := Mw mod q

u2 := rw mod q

v := (gu1yu2 mod p) mod q

Check if r = v

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 5



Ellliptic Curve Cryptography

• Elliptic curves defined over GF (p) or GF (2k) are used in cryptography

• The arithmetic of GF (p) is the usual mod p arithmetic

• The arithmetic of GF (2k) is similar to that of GF (p), however, there
are some differences

• Elliptic curves over GF (2k) are more popular due to the space and
time-efficient algorithms for doing arithmetic in GF (2k)

• Elliptic curve cryptosystems based on discrete logarithms seem to provide
similar amount of security to that of RSA, but with relatively shorter key
sizes

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 6



Computations of Cryptographic Functions

• It is interesting to note that all public-key cryptographic algorithms are
based on number-theoretic and algebraic finite structures, such as groups,
rings, and fields

• In fact, most of them need modular arithmetic, i.e., the arithmetic of
integers in finite rings or fields

• The challenge is however that the sizes of operands are large, starting
from about 160 bits up to 16,000 bits

• Therefore, the algorithmic development of cryptographic hardware design
is essentially based on (exact) computer arithmetic with very large
integers

• Since exponentiations & multiplications are most time/energy/space
consuming computations, we will only study those in our talk

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 7



Computing Exponentiations

• Given the integer e, the computation of Me or eP is an exponentiation
operation

• The objective is to use as few multiplications (or elliptic curve additions)
as possible for a given integer e

• This problem is related to addition chains

• An addition chain yields an algorithm for computing Me or eP given the
integer e

M1→M2→M3 →M5→M10→M11→M22→M44→M55

P → 2P → 3P → 5P → 10P → 11P → 22P → 44P → 55P

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 8



Computing Exponentiations

• Finding the shortest addition chain is an NP-complete problem

• Lower bound: log2 e + log2 H(e)− 2.13 (Schönhage)

• Upper bound: ⌊log2 e⌋+ H(e)− 1, where H(e) is the Hamming weight
of e (the binary method, the SX method, Knuth)

• It turns out the oldest known algorithm for computing exponentiation is
not too far in efficiency to the best algorithm

• Heuristics, m-ary, adaptive m-ary, sliding windows, power tree methods
offer only slight improvements

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 9



Computing Modular Multiplication - Naive Algorithms

• Given a, b < n, compute P = a · b mod n

• Multiply and reduce:

Multiply: P ′ = a · b (2k-bit number)

Reduce: P = P ′ mod n (k-bit number)

• Reductions are essentially integer divisions

• However, multiply and reduce steps can be interleaved, but offering only
slight improvements

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 10



Interleaved Multiply & Reduce - Naive Algorithms

P ′ = a · b = a ·
k−1∑

i=0

bi2
i =

k−1∑

i=0

(a · bi)2
i

= 2(· · · 2(2(0 + a · bk−1) + a · bk−2) + · · ·) + a · b0

1. P := 0
2. for i = k − 1 downto 0
2a. P := 2P + a · bi

2b. P := P mod n
3. return P

• Unfortunately, Step 2b is highly time consuming (a full division for every
bit of the operands)

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 11



Montgomery Multiplication - 1985

• Attempts to create good hardware to compute the RSA functions (sign,
verify, encrypt, decrypt) in acceptable time have essentially failed because
of the excessive requirements of the naive algorithms

• This includes Rivest’s hardware proposal and all other implementations
until the Montgomery multiplication algorithm came about

• Peter Montgomery discovered a method to replace Step 2b with a step
similar to Step 2a: an addition instead of a division

• It is brilliant and efficient

• Montgomery’s algorithm changed cryptographic design in a way very
much like the FFT algorithm changed the digital signal processing

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 12



Montgomery Multiplication

• Montgomery’s method maps the integers {0, 1, 2, . . . , n−1} to the same
set with the map x̄ = x · r (mod n) using the integer r = 2k

• It then works in this set (numbers with the “bar” sign) and performs the
multiplication

MonPro(ā, b̄) = ā · b̄ · 2−k (mod n)

• The above operation turns out to be significantly simpler than the
standard modular multiplication a · b (mod n) because the division by
n in Step 2b (reduction) is avoided

• Transformation to and back from the “bar” domain is also quite easily
done, i.e., x̄ = MonPro(x, r2) and x = MonPro(x̄, 1)

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 13



Montgomery Multiplication

• In order to compute u = MonPro(a, b) = a · b · 2−k (mod n), we use
the steps below

1. u := 0
2. for i = 0 to k − 1
2a. u := u + ai · b
2b. if u0 is 1 then u := u + n
3. u := u/2

• Now, Step 2b is only an addition!

• And, it is is done about half of the time!

• We remain in the Montgomery (“bar”) domain of integers until the final
step of the exponentiation, and then use the conversion routine to go
back to the “no bar” domain

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 14



Karatsuba-Ofman Multiplication

• Algorithms Textbooks offer a few asymptotically faster multiplication
algorithms: Karatsuba-Ofman, Toom-Cook, Winograd, and DFT-based
algorithms

• These algorithms are all good: they help you to multiply faster

• But, they are no help in modular multiplication, i.e., they do not
multiply-and-reduce (Montgomery’s method is special)

• They also have large overhead, and start being faster only after a few
thousand bits

• However, there has been significant algorithmic developments to bring
down their break-even point to a few hundred bits

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 15



Advanced Montgomery Multiplication

• On the other hand, Montgomery algorithms also improved

• They can be made fit into specific archiectures, by changing the way
they scan the bits of the multiplicand, the multiplier, and the product

• Separated Operand Scanning (SOS): First computes t = a · b and then
interleaves the computations of m = t · n′ mod r and u = (t + m · n)/r.
Squaring can be optimized.

SOS requires 2s + 2 words of space

• Finely Integrated Product Scanning (FIPS): Interleaves computation of
a · b and m · n by scanning the words of m

It uses the same space to keep m and u, reducing the temporary space
to s + 3 words

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 16



Advanced Montgomery Multiplication

• Finely Integrated Operand Scanning (FIOS): The computation of a · b
and m · n is performed in a single loop

FIOS also requires s + 3 words of space

• Coarsely Integrated Hybrid Scanning (CIHS): The computation of a · b is
split into 2 loops, and the second loop is interleaved with the computation
of m · n

CIHS also requires s + 3 words of space

• Coarsely Integrated Operand Scanning(CIOS): Improves the SOS method
by integrating the multiplication and reduction steps. It alternates
between iterations of the outer loops for multiplication and reduction

CIOS also requires s + 3 words of space

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 17



Advanced Montgomery Multiplication

• All methods require 2s2 + s multiplications

• Add, Read/Write and Space requirements are below

Add Read/Write Space

SOS 4s2+4s+2 8s2+13s+5 2s+2

FIPS 6s2+2s+2 14s2+16s+3 s+3

FIOS 5s2+3s+2 10s2+9s+3 s+3

CIHS 4s2+4s+2 9.5s2+11.5s+3 s+3

CIOS 4s2+4s+2 8s2+12s+3 s+3

• Depending on the availability of functional units (multipliers, adders,
registers), one method can outperform another and thus should be
selected

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 18



Montgomery Multiplication in GF (2k)

• It turns out that the Montgomery multiplication can also be performed
in the finite field GF (2k) if the polynomial basis representations of the
field elements are employed

• It imitates the the Montgomery multiplication in GF (p) by taking
the modulus the irreducible polynomial p(x) generating the field of 2k

elements

• It is not as fast as the normal basis, but it has some advantages

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 19



Montgomery Multiplication in GF (2k)

• In order to compute

u(x) = MonPro(a(x), b(x)) = a(x) · b(x) · x−k mod p(x) ,

we use the steps below

1. u(x) := 0
2. for i = 0 to k − 1
2a. u(x) := u(x) + ai · b(x) mod 2
2b. if u0 is 1 then u(x) := u(x) + p(x) mod 2
3. u := u/2

• Now Steps 2a and 2b use mod 2 additions (XOR gates)

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 20



Unified Arithmetic

• One advantage of the Montgomery multiplication in GF (2k) is that a
single arithmetic unit can be used to handle both kinds of fields: GF (p)
and GF (2k): This is called unified arithmetic (or, dual-field arithmetic)

• Advantages of the unified arithmetic are low manufacturing cost,
compatibility, parallelism, and scalability

• Furthermore, unified arithmetic is impartial: it does not favor one prime
against another or one irreducible polynomial against another

• The building block of the unified architecture is the unified full adder: a
1-bit adder that handles both GF (p) and GF (2k)

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 21



Unified Full Adder

UnivAdder

a

b

c

FSEL

S

Cout

(a) Universal Adder (b) Synthesized circuit by Mentor

c

a
b

FSEL

S

Cout

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 22



Scalability

• Scalability is an important concept: it allows to make small changes
in the hardware to handle larger operands without a complete redesign
(such as switching from 1024-bit RSA keys to 1536-bit RSA keys)

PE 1 PE 2 PE 3 PE k

Buffer

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 23



Dependency Graph of Montgomery Multiplication

b(0), p(0)

b(0), p(0)

b(0), p(0)

b(1), p(1)

b(2), p(2)

b(3), p(3)

b(4), p(4)

b(e+1),p(e+1)

b(1), p(1)

b(2), p(2)

a0

a1

a2

(0)

(0)

(0)

(0)

(0)

(0)

c(0)

c(1)

c(2)

c(e)

c(0)

c(e)

b(e+1),p(e+1)
c(e-1)

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 24



Pipelined Montgomery Multiplication

An example of pipeline computation for 7 bit operands 

where w=1

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 25



Pipelined Architecture with Fewer Units

Pipeline stalls when fewer 

i i il blprocessing units are available

m=7, w=1, k=3

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 26



General Pipelined Architecture

PU1 PU2 PUt
Latch

Latch

Latch

Reg-c
Reg-p

Reg-b

Reg-a
ai ai+1 ai+t-1k k k

2w
w
w

c(j)

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 27



Spectral Arithmetic

• We use FFT-based arithmetic to implement modular multiplication

• However, we are interested in performing the reduction inside the spectral
(frequency) domain

• We utilize finite ring and field arithmetic (avoid real or complex arithmetic
because of the roundoff errors in using floating-point or fixed-point
arithmetic)

• We also want to bring down the break-even point of efficiency for
FFT-based multiplication

• Furthermore, we utilize the properties of the DFT and Montgomery
algorithm to perform modular multiplication

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 28



Spectral Arithmetic

Modular 
Reduction

Modular 
Multiplication

Convolution

DFT Inverse DFT 

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 29



DFT over a Finite Ring: Definition

Let ω be a primitive d-th root of unity in Zq and, let x(t) and X(t) be
polynomials of degree d− 1 having entries in Zq. The DFT map over Zq is
an invertib le set map sending x(t) to X(t) given by

Xi = DFT ω
d (x(t)) :=

d−1∑

j=0

xjω
ij mod q,

with the inverse

xi = IDFT ω
d (X(t)) := d−1 ·

d−1∑

j=0

Xjω
−ij mod q,

for i, j = 0, 1, . . . , d− 1.

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 30



DFT over a Finite Ring: Existence

We write

x(t)
DFT

←→
X(t)

and say x(t) and X(t) are transform pairs; x(t) is called a time polynomial

and sometimes X(t) is named as the spectrum of x(t).

• (Convention) In the literature, DFT over a finite ring spectrum is also
called as Number Theoretical Transform (NTT)

• (Existence) In order to have a DFT map over Zq:

– The multiplicative inverse of DFT length d must exist in Zq which
requires that gcd(d, q) = 1.

– d has to divide p− 1 for every prime p divisor of q

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 31



DFT over a Finite Ring: Efficiency

In order to have simple arithmetic

• q should be chosen as
a Mersenne number q = 2v − 1, or
a Fermat number q = 2v + 1

• The principal root of unity ω should be selected as a power of 2 to
simplify the multiplications with roots of unity

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 32



Properties of DFT

• Under certain conditions, the Fourier transform preserves some properties
of the time sequences, e.g., linearity and convolution.

• The existence conditions of these properties differ when working in finite
ring spectrums

• Let φ and Φ be operations on time and spectral domains respectively.
We write

φ
DFT

←→
Φ

and say φ and Φ are transform pairs on x(t) and sometimes declare that
the map DFT ω

d respects the operation φ on point x(t) if following
equation is satisfied

φ(x(t)) = IDFT ω
d ◦ Φ ◦DFT ω

d (x(t))

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 33



Time-Frequency Dictionary

• Time and frequency shifts correspond to circular shifts Let

x(t) = x0 + x1t + . . . + xd−1t
d−1

and
X(t) = X0 + X1t + . . . + Xd−1t

d−1

be a transform pair.

The one-term right circular shift is defined as x(t) 	 1

x1 + x2t + . . . + xd−2t
d−1 + x0t

d−1

l DFT

X(t)⊙ Γ(t)

where ⊙ stands for component-wise multiplication and

Γ(t) = 1 + ω−1t + . . . + ω−(d−1)td−1

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 34



Time-Frequency Dictionary

• Sum of sequence and first value: The sum of the coefficients of a time
polynomial equals to the zeroth coefficient of its spectral polynomial.
Conversely the sum of the spectrum coefficients equals to d−1 times the
zeroth coefficient of the time polynomial

x0 = d−1 ·
d−1∑

i=0

Xiω
−i and X0 =

d−1∑

i=0

xiω
i

(x0, x1, …, xd-1) (X0, X1, …, Xd-1)
DFT

sum equals to X0

sum multiplied by d-1 
equals to x0

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 35



Time-Frequency Dictionary

• Left and right logical shifts: By using the previous properties, it is
possible to perform logical left and right digit shifts x(t)≪ 1 as follows:

(x(t)− x0)/t = x1 + . . . + xd−1t
d−2

l DFT

(X(t)− x0(t))⊙ Γ(t)

where
x0(t) = x0 + x0t + x0t

2 + . . . + x0t
d−1

• The right shifts are similar, where one then uses the

Ω(t) = 1 + ω1t + . . . + ω(d−1)td−1

polynomial instead of Γ(t)

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 36



A Time Simulation for Spectral Modular Multiplication

We would like to compute 8592 · 4−9 (mod 1337).
Signal x(t) representing 859 = x(4) in base 4.

3 2 1 1
3

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 37



A Time Simulation for SMP

Convolving x(t) with itself, we find x2(t) = 8592 = 737881.

9

67

14

1010
12

9

23

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 38



A Time Simulation for SMP

The modulus m = 1337 is represented as m = 1 + 2t + 3t2 + t4 + t5.We
add 3m to the sum to anhilate the least significant b bits of the least digit.

12

9

67

10

17

26

1918

0
0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 39



A Time Simulation for SMP

Carry goes to the next digit.

9

67

10

17

26

19
21

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

3

Carry added from the 
eliminated coefficient

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 40



A Time Simulation for SMP

We then shift the digits.

9

67

10

17

26

19
21

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 41



A Time Simulation for SMP

After 9 iterations, we find the result: 914 ≡ 8592 · 4−9 (mod 1337).

1
343

6

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 42



Unending Quest for Efficiency

• Conclusions?

• Challenges remain: Make faster but low-area and low-energy hardware
for cryptography

• Platforms are diverse: Huge SSL and IPSec boxes versus tiny Bluetooth
earphones, cellphones and PDAs

• New challenges: We need to build countermeasures in order to circumvent
attacks by adversaries to obtain hardware-hidden secrets

• Questions?

Email: koc@cryptocode.net

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV 43


