
Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Partially Homomorphic Cryptography

http://koclab.org Çetin Kaya Koç Spring 2018 1 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Homomorphic Cryptography

Homomorphic encryption is a form of encryption that allows
computations to be carried out on ciphertexts

The encrypted result which, when decrypted, matches the result of
certain operations performed on the plaintext

Fully homomorphic encryption algorithms allow several operations,
such as addition, multiplication, and multiplication by a scalar

It may also allow more complicated functions

http://koclab.org Çetin Kaya Koç Spring 2018 2 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Homomorphic Cryptography

For example, given c1 = E (m1) and c2 = E (m2), and a scalar α, we
may be able perform certain operations on ciphertexts c1 and c2, and
obtain the ciphertexts that are encryptions of:

c1 ⊕ c2 = E (m1)⊕ E (m2) = E (m1 + m2)
c1 � c2 = E (m1)� E (m2) = E (m1 ·m2)
α⊗ c1 = α⊗ E (m1) = E (α ·m1)

Other operations such as m1 < m2 are also very useful

A fully homomorphic encryption function allows the computation of
any function g() over the plaintext with the help of another function
f () over the ciphertext

c = E (m) ⇒ f (c) = E (g(m))

http://koclab.org Çetin Kaya Koç Spring 2018 3 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Partially Homomorphic PKC

Many public-key cryptographic functions are partially homomorphic,
that is, they allow a subset of ciphertext operations

For example, consider that c = E (m) is the RSA function, i.e.,
c = E (m) = me (mod n), where (e, n) are the RSA public (or
private) exponent and the modulus

Given c1 = E (m1) and c2 = E (m2), we can perform modular
multiplications

c1 · c2 = E (m1) · E (m2) (mod n)

= me
1 ·me

2 (mod n)

= (m1 ·m2)e (mod n)

= E (m1 ·m2)

Therefore, the RSA encryption is multiplicatively homomorphic

http://koclab.org Çetin Kaya Koç Spring 2018 4 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Additively Homomorphic RSA?

Is the RSA encryption is additively homomorphic?

Unfortunately, the encrypted text E (m1 + m2) cannot be easily
obtained using the ciphertexts c1 = E (m1) and c2 = E (m2)

E (m1 + m2) = (m1 + m2)e (mod n)

?
= me

1 ⊕me
2 (mod n)

There does not seem to exist a simple operation ⊕ so that when we
apply c1 ⊕ c2, we could obtain E (m1 + m2)

The RSA encryption does not seem to be additively homomorphic

http://koclab.org Çetin Kaya Koç Spring 2018 5 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Multiplicatively Homomorphic ElGamal

Several PKC algorithms are also multiplicatively homomorphic:
ElGamal, Goldwasser-Micali, Benaloh, and Paillier

In ElGamal, the encryption of m1 is obtained as the pair (c11, c12)

c11 = g r1 (mod p)

c12 = m1 · y r1 (mod p)

Similarly, the encryption of m2 is obtained as the pair (c21, c22)

c21 = g r2 (mod p)

c22 = m2 · y r2 (mod p)

such that the random numbers r1 and r2 are (obviously) different

http://koclab.org Çetin Kaya Koç Spring 2018 6 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Multiplicatively Homomorphic ElGamal

The pairwise product of the ciphertext pairs would give

c11 · c21 = g r1 · g r2 (mod p)

= g r1+r2 (mod p)

c12 · c22 = (m1 · y r1) · (m2 · y r2) (mod p)

= m1 ·m2 · y r1+r2 (mod p)

Therefore, we conclude that the product pair

(c11 · c21 mod p, c12 · c22 mod p)

is the encryption of the product of the plaintexts

m1 ·m2 (mod p)

with the random number r1 + r2

http://koclab.org Çetin Kaya Koç Spring 2018 7 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Additively Homomorphic ElGamal

It turns out ElGamal algorithm can be made additively homomorphic
by making a small change in the method

The additively homomorphic ElGamal encryption is also based on the
large prime p and the primitive root g mod p

The private key is x ∈ Z∗p and the public key y = g x (mod p)

Encryption of the plaintext m ∈ Z∗p
The sender generates a random number r and computes

c1 = g r (mod p)

c2 = gm · y r (mod p)

The encryption of m is the ciphertext pair E (m) = (c1, c2)

http://koclab.org Çetin Kaya Koç Spring 2018 8 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Additively Homomorphic ElGamal

Decryption of the ciphertext (c1, c2)

The receiver has the private key x and computes u1 and u2 as

u1 = cx1 = (g r)x = (g x)r = y r (mod p)

u2 = u−11 · c2 = y−r · (gm · y r) = gm (mod p)

which are found as u1 = y r and u2 = gm

However, the legitimate owner of the private cannot decrypt the
ciphertext pair (c1, c2) to obtain m

In order to find m from u2 = gm, the receiver needs to solve a DLP,
which is an intractable problem

http://koclab.org Çetin Kaya Koç Spring 2018 9 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Additively Homomorphic ElGamal

If we ignore the problem that the legitimate owner of the private key
cannot decrypt the ciphertext pair (c1, c2) to obtain m, we can check
to see that this new version of ElGamal is additively homomorphic

Element addition ⊕ operation: Given E (m) = (c1, c2) and
E (m′) = (c ′1, c

′
2) for arbitrary plaintexts m and m′, we compute

E (m)⊕ E (m′) = (c ′′1 , c
′′
2) using

c ′′1 = c1 · c ′1 (mod p)

c ′′2 = c2 · c ′2 (mod p)

Then, it is easy to see that the ciphertext pair (c ′′1 , c
′′
2) is the

encryption of E (m + m′)

http://koclab.org Çetin Kaya Koç Spring 2018 10 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Element Addition

We have indeed obtained

c1 = g r (mod p)

c2 = gm · y r (mod p)

c ′1 = g r ′ (mod p)

c ′2 = gm′ · y r ′ (mod p)

c ′′1 = g r · g r ′ = g r+r ′ (mod p)

c ′′2 = (gm · y r) · (gm′ · y r ′) = gm+m′ · y r+r ′ (mod p)

In other words, the pair (c ′′1 , c
′′
2) is the encryption of m + m′ with the

random number r + r ′

E (m)⊕ E (m) = E (m + m′) = (c ′′1 , c
′′
2) = (g r ′′ , gm+m′ · y r ′′)

http://koclab.org Çetin Kaya Koç Spring 2018 11 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Scalar-by-Element Multiplication

Given an arbitrary scalar α and the element E (m) = (c1, c2), the
scalar-by-element multiplication requires the computation of

c ′1 = cα1 (mod p) (1)

c ′2 = cα2 (mod p)

This gives E (αm) since

c ′1 = cα1 = g rα = gαr (mod p)

c ′2 = cα2 = (gm · y r)α = gαm · yα r (mod p)

In other words, the pair (c ′1, c
′
2) is the encryption of αm since, for

some random r ′ = α r , we have

E (αm) = (c ′1, c
′
2) = (g r ′ , gαm · y r ′)

http://koclab.org Çetin Kaya Koç Spring 2018 12 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Additively Homomorphic ElGamal

Therefore, we see that this new definition of the ElGamal encryption
algorithm has two basic properties of additively homomorphic
functions: Element Addition and Scalar-by-Element Multiplication

However, we also know that given a pair of ciphertext (c1, c2), the
legitimate owner of the private key can only obtain gm (mod p) by
decryption, but cannot obtain m

However, interestingly, while the legitimate user cannot decrypt
(c1, c2) to obtain m, she can discover whether the plaintext is zero:
m = 0

In other words, if m = 0, the legitimate owner of the private key can
decrypt it

http://koclab.org Çetin Kaya Koç Spring 2018 13 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Decryption of Zero in Additively Homomorphic ElGamal

Encryption of m = 0: The sender generates a random number r and
computes the ciphertext:

c1 = g r (mod p)

c2 = g0 · y r = y r (mod p)

Decryption for m = 0: The receiver computes u1 and u2

u1 = cx1 = y r (mod p)

u2 = u−11 · c2 = y−r · y r = 1 (mod p)

The receiver decides whether m = 0 by checking if u2 = 1

u2 = 1⇒ m = 0

http://koclab.org Çetin Kaya Koç Spring 2018 14 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Decryption of Zero in Additively Homomorphic ElGamal

The decryption of zero property allows one to check for equality of
two plaintexts whose ciphertexts are given

This operation however requires access to the decryption key

It is important to realize that ElGamal encryption algorithm is
randomized: every encryption (even, of the same plaintext) involves a
different random number r

Therefore, the encryption of the same m will produce a different
ciphertext pair at each encryption

Given m = m′ with E (m) = (c1, c2) and E (m′) = (c ′1, c
′
2), the cipher

text pairs are not equal c1 6= c ′1 and c2 6= c ′2

http://koclab.org Çetin Kaya Koç Spring 2018 15 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Equality Checking Operation

Given E (m) = (c1, c2) and E (m̂) = (ĉ1, ĉ2), the equality checking
determines if m = m̂

First: we perform scalar-by-element multiplication of E (m̂) using the
scalar α = −1 to obtain E (−m̂) = (c ′1, c

′
2)

c ′1 = ĉα1 = ĉ−11 (mod p)

c ′2 = ĉα2 = ĉ−12 (mod p)

This gives E (−m̂) = (c ′1, c
′
2)

http://koclab.org Çetin Kaya Koç Spring 2018 16 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Equality Checking Operation

Second: we perform the element addition operation E (m) + E (−m̂)
on the given ciphertext pairs, and

c ′′1 = c1 · c ′1 (mod p) (2)

c ′′2 = c2 · c ′2 (mod p)

Therefore, we obtain the ciphertext of the encrypted sum
E (m − m̂) = (c ′′1 , c

′′
2)

Now, if m = m̂, this ciphertext pair must be the encryption of 0

http://koclab.org Çetin Kaya Koç Spring 2018 17 / 18

http://koclab.org

Partially Homomorphic Cryptography Homomorphic, Partially Homomorphic, ElGamal

Additively Homomorphic ElGamal

Third: the legitimate user performs Decryption of Zero operation

This is accomplished using the operation steps:

u1 = (c ′′1)x (mod p)

u2 = u−11 · c
′′
2 (mod p)

u2 = 1 ⇒ m = m̂

First and Second steps are accomplished without having access to the
private key, and the resulting pair (c ′′1 , c

′′
2) is sent to the owner of the

private key, who performs Decryption of Zero operation and decides if
m = m̂

This property allows secure search

http://koclab.org Çetin Kaya Koç Spring 2018 18 / 18

http://koclab.org

