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Exponentiation and Point Multiplication

Given the integer d , the computation of S = Md (mod n) is the
exponentiation operation

If the modulus n is a prime p, the exponentiation is performed over
GF(p) arithmetic, otherwise, n is a composite integer and the
exponentiation is performed in the ring Zn arithmetic

On the other hand, the computation of Q = [d ]P using a point P in
an elliptic curve group E is a point multiplication operation

These two operations form the basis of almost all cryptographic
algorithms and protocols, such RSA, DH, ElGamal, DSA, ECDH,
ECDH, ECIES, EdDSA, and more
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Exponentiation and Point Multiplication

Interestingly and surprisingly, both computations S = Md (mod n)
and Q = [d ]P are accomplished using similar exponentiation
heuristics (algorithms)

The objective of these hueristics is to use as few modular
multiplications or as few elliptic curve additions as possible to
compute Md (mod n) or [d ]P, for a given integer d

These exponentiation algorithms are also called addition chains or
addition-subtraction chains
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Exponentiation Heuristics

An addition chain is a sequence of integers

a0 a1 a2 · · · ar

starting from a0 = 1 and ending with ar = d such that any ak is the
sum of two earlier integers ai and aj in the chain:

ak = ai + aj for 0 < i , j < k

Example: d = 55

1 2 3 6 12 13 26 27 54 55
1 2 3 6 12 13 26 52 55
1 2 4 5 10 20 40 50 55
1 2 3 5 10 11 22 44 55
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Addition Chains

We should prefer shorter chains

Consider the addition chain for d = 55

1→ 2→ 3→ 5→ 10→ 11→ 22→ 44→ 55

It yields an algorithm for computing S = Md (mod n)

M1 → M2 → M3 → M5 → M10 → M11 → M22 → M44 → M55

Similarly, for computing Q = [d ]P

P → [2]P → [3]P → [5]P → [10]P → [11]P → [22]P → [44]P → [55]P

The length of the chain:
The number of multiplications+squarings to compute Md (mod n)
The number of point additions+doublings to compute [d ]P
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Addition Chains

Finding the shortest addition chain for a given (unbounded) d is an
NP-complete problem

Upper bound: blog2 dc+ H(d)− 1, where H(d) is the Hamming
weight of d (the binary method)

Lower bound: log2 d + log2H(d)− 2.13 (proven by Schönhage)

Addition chain algorithms: Power tree, factor, binary, m-ary, adaptive
m-ary, and sliding windows methods

Optimization techniques, such as simulated annealing, were used to
produce short addition chains for certain exponents
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Power Tree Method

The power tree method creates a tree of all powers M up to d

It recursively builds new chains from the existing ones

Therefore, it always finds the shortest chains

Finding the shortest chain is an NP-complete problem

The power tree method requires exponential time and space in k

The power tree method may be useful for small exponents
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Power Tree Construction

The root of the tree has 1

Scan the nodes of the tree at the mth level, from left to right

Consider the node e at the the mth level

Construct the (m + 1)st level of the tree by attaching below the node
e the nodes with values

e + a1 e + a2 e + a3 · · · e + ar

where a1, a2, . . . , ar is the path from the root of the tree to the node
e, therefore, a1 = 1 and ar = e

Discard duplicate notes that have already appeared in the tree

http://koclab.org Çetin Kaya Koç Spring 2018 9 / 70
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Power Tree Construction

Consider the power tree whose 4 levels are already completed

1

2

3 4

5 6 8

7 10 9 12 16

We start with the leftmost node 7

Path from root to 7 visits 1, 2, 3, 5, 7

Possible new nodes:
7 + 1 = 8
7 + 2 = 9
7 + 3 = 10
7 + 5 = 12
7 + 7 = 14

Nodes 8, 9, 10, and 12 are in tree

We add only 14 below 7
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Power Tree Construction

Therefore, the new power tree would be

1

2

3 4

5 6 8

7 10 9 12 16

14

Next node to consider node is 10

Path from root to 10 visits 1, 2, 3, 5, 10

Possible new nodes:
10 + 1 = 11
10 + 2 = 12
10 + 3 = 13
10 + 5 = 15
10 + 10 = 20

Node 12 is in tree

We add 11, 13, 15, 20 below 10
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Power Tree Construction

Therefore, the new power tree would be

1

2

3 4

5 6 8

7 10 9 12 16

14 11 13 15 20

Next node to consider node is 9

Path from root to 10 visits 1, 2, 3, 6, 9

Possible new nodes:
9 + 1 = 10
9 + 2 = 11
9 + 3 = 12
9 + 6 = 15
9 + 9 = 18

Nodes 10, 11, 12, 14 are in tree

We add only 18 below 9
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Computation using the Power Tree

Once the power tree is constructed, we need to find exponent d in it

The power tree requires exponential time and space in terms of k

If d is in tree, the path from the root to d is the shortest chain

1

2

3 4

5 6 8

7 10 9 12 16

14 11 13 15 20

The chain for d = 15

1→ 2→ 3→ 5→ 10→ 15

The length of the chain is 5

5 is the shortest chain length for d = 15
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Computation using the Power Tree

For d = 15, the power tree produces the length 5 chain

1→ 2→ 3→ 5→ 10→ 15

This is the shortest chain length for d = 15

The binary method produces a chain of length 6:

1→ 2→ 3→ 6→ 7→ 14→ 15

There may be other addition chains of length 5 for d = 15

However, no chain exists with length less than 5
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Various Shortest Chains by Power Tree

d Length Shortest Chain

15 5 1, 2, 3, 5, 10, 15

55 8 1, 2, 3, 5, 10, 11, 22, 44, 55

119 9 1, 2, 3, 5, 7, 14, 28, 56, 112, 119

250 10 1, 2, 3, 5, 10, 15, 25, 50, 75, 125, 250

249 10 1, 2, 3, 5, 10, 20, 40, 43, 83, 166, 249

251 11 1, 2, 3, 5, 7, 14, 28, 31, 62, 124, 248, 251

365 11 1, 2, 3, 5, 10, 15, 30, 45, 90, 180, 360, 365

2730 14 1, 2, 3, 5, 7, 14, 21, 42, 84, 168, 336, 672,

1344, 1365, 2730

3038 10 1, 2, 3, 5, 7, 14, 21, 42, 63, 126, 189, 378,

756, 1512, 1519, 3038

3665 15 1, 2, 3, 5, 7, 14, 28, 56, 112, 224, 229, 458,

916, 1832, 3664, 3665
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Factor Method

The factor method is based on factorization of the exponent
d = a · b, where a is the smallest prime factor of d and b > 1

We then compute Md by first computing Ma and then raising this
value to the bth power

Md = Mab = (Ma)b

If d is prime, we first compute Md−1 using the factor method, and
the multiply by M

The algorithm proceeds recursively until small exponents are
obtained, at which time the power tree method can be utilized
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Factor Method Example

Given d = 55 = 5 · 11

First compute M5 using M → M2 → M4 → M5

Now assign x ← M5 and compute x11 which would give M55

The computation of x11 is accomplished by first computing x10 and
then multiplying by x since 11 is prime

10 = 2 · 5 implies we first compute x2 using x → x2

Now assign y = x2 and compute y5 using y → y2 → y4 → y5

Finally, to compute x11 we use x10 → x11

Therefore, the factor method computes M55 using

M → M2 → M4 → M5 ⇒ x → x2 ⇒ y → y 2 → y 4 → y 5 ⇒ x10 → x11 ⇒ M55
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Factor Method Comparison

The factor method produces a length 8 chain for d = 55

1→ 2→ 4→ 5→ 10→ 20→ 40→ 50→ 55

Since 55 = (110111), the binary method produces a length 9 chain

1→ 2→ 3→ 6→ 12→ 13→ 26→ 27→ 54→ 55

The quaternary method partitions d as 11 01 11

Preprocessing: M → M2 → M3

Exponentiation: M3 → M6 → M12 → M13 → M26 → M52 → M55

Thus, the quaternary method produces a length 8 chain

1→ 2→ 3→ 6→ 12→ 13→ 26→ 52→ 55
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Binary Method

Known since antiquity: Scan the bits of d and perform squaring and
multiplication operation to compute S = Md (mod n)

Similarly: Scan the bits of d and perform point doubling and point
addition operation to compute Q = [d ]P

The exponent d is assumed to have k = dlog2(d)e bits

Generally dk−1 = 1 but this is not necessary

There are 2 versions of the binary method: Left-to-Right (LR) and
Right-to-Left (RL) depending on how exponent bits are scanned

The binary method can be generalized to the m-ary method by
scanning several bits at a time
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LR Binary Method of Exponentiation

Input: M, d , n
Output: S = Md mod n
1: if dk−1 = 1 then S ← M else S ← 1
2: for i = k − 2 downto 0
2a: S ← S · S (mod n)
2b: if di = 1 then S ← S ·M (mod n)
3: return S
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LR Binary Method of Exponentiation Example

d = 55 = (110111) and k = 6

Step 1: d5 = 1 =⇒ S ← M

Steps 2a and 2b:

i di Step 2a (S) Step 2b (S)

4 1 (M)2 = M2 M2 ·M = M3

3 0 (M3)2 = M6 M6

2 1 (M6)2 = M12 M12 ·M = M13

1 1 (M13)2 = M26 M26 ·M = M27

0 1 (M27)2 = M54 M54 ·M = M55

Step 3: Return S = M55
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LR Binary Method of Point Multiplication

Input: P, d
Output: Q = [d ]P
1: if dk−1 = 1 then Q ← P else Q ← O
2: for i = k − 2 downto 0
2a: Q ← Q ⊕ Q
2b: if di = 1 then Q ← Q ⊕ P
3: return Q
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LR Binary Method of Point Multiplication Example

d = 55 = (110111) and k = 6

Step 1: d5 = 1 =⇒ Q ← P

Steps 2a and 2b:

i di Step 2a (Q) Step 2b (Q)

4 1 P ⊕ P = [2]P [2]P ⊕ P = [3]P
3 0 [3]P ⊕ [3]P = [6]P [6]P
2 1 [6]P ⊕ [6]P = [12]P [12]P ⊕ P = [13]P
1 1 [13]P ⊕ [13]P = [26]P [26]P ⊕ P = [27]P
0 1 [27]P ⊕ [27]P = [54]P [54]P ⊕ P = [55]P

Step 3: Return Q = [55]P
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RL Binary Method of Exponentiation

Input: M, d , n
Output: S = Md mod n
1: S ← 1 and T ← M
2: for i = 0 to k − 2
2a: if di = 1 then S ← S · T (mod n)
2b: T ← T · T (mod n)
3: if di = 1 then S ← S · T (mod n)
4: return S
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RL Binary Method of Exponentiation Example

d = 55 = (110111) and k = 6

Step 1: S ← 1 and T ← M

Steps 2a and 2b:

i di Step 2a (S) Step 2b (T )

0 1 1 ·M = M (M)2 = M2

1 1 M ·M2 = M3 (M2)2 = M4

2 1 M3 ·M4 = M7 (M4)2 = M8

3 0 M7 (M8)2 = M16

4 1 M7 ·M16 = M23 (M16)2 = M32

Step 3: d5 = 1 =⇒ S ← S · T = M23 ·M32 = M55

Step 4: Return S = M55
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RL Binary Method of Point Multiplication

Input: P, d
Output: Q = [d ]P
1: Q ← O and R ← P
2: for i = 0 to k − 2
2a: if di = 1 then Q ← Q ⊕ R
2b: R ← R ⊕ R
3: if di = 1 then Q ← Q ⊕ R
4: return Q
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RL Binary Method of Point Multiplication

d = 55 = (110111) and k = 6

Step 1: Q ← O and R ← P

Steps 2a and 2b:

i di Step 2a (Q) Step 2b (R)

0 1 O ⊕ P = P P ⊕ P = [2]P
1 1 P ⊕ [2]P = [3]P [2]P ⊕ [2]P = [4]P
2 1 [3]P ⊕ [4]P = [7]P [4]P ⊕ [4]P = [8]P
3 0 [7]P [8]P ⊕ [8]P = [16]P
4 1 [7]P ⊕ [16]P = [23]P [16]P ⊕ [16]P = [32]P

Step 3: d5 = 1 =⇒ Q ← Q · R = [23]P ⊕ [32]P = [55]P

Step 4: Return Q = [55]P
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The m-ary Method

By scanning the bits of d

2 at a time: The quaternary method
3 at a time: The octal method
· · ·
w at a time: The m-ary method (m = 2w )

We may need all powers Mv or [v ]P for v ∈ [0, 2w − 1]

At each step 2 squaring operations performed

It is also called the “window” method

The width of the window is w bits

Consider the quaternary method: d = 250 = 11 11 10 10
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Quaternary Exponentiation Example

d = 250 = 11 11 10 10

Preprocessing

bits v Mv

00 0 1
01 1 M
10 2 M ·M = M2

11 3 M2 ·M = M3

Starting value S = M3 since the leftmost window is (11)2

bits Step 2a (S) Step 2b (S)

11 (M3)4 = M12 M12 ·M3 = M15

10 (M15)4 = M60 M60 ·M2 = M62

10 (M62)4 = M248 M248 ·M2 = M250

The quaternary method requires 2 + 6 + 3 = 11 multiplications
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Quaternary Point Multiplication Example

d = 250 = 11 11 10 10

Preprocessing

bits v [v ]P

00 0 O
01 1 P
10 2 P ⊕ P = [2]P
11 3 P ⊕ [2]P = [3]P

Starting value Q = [3]P since the leftmost window is (11)2

bits Step 2a (Q) Step 2b (Q)

11 [4]([3]P) = [12]P [12]P ⊕ [3]P = [15]P

10 [4]([15]P) = [60]P [60]P ⊕ [2]P = [62]P

10 [4]([62]P) = [248]P [248]P ⊕ [2]P = [250]P

The quaternary method requires 2 + 6 + 3 = 11 point additions
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http://koclab.org


Exponentiation and Point Multiplication Integer, Finite Field, HW, SW

The m-ary Method

The average number of multiplications for the m-ary method:

Preprocessing multiplications: 2w − 2
This is for computing M2,M3,M4, . . . ,M2w−1

Squarings: ( k
w − 1) · w = k − w

There are (k/w − 1) digits
For each digit we perform w squaring operations

Multiplications: m−1
m · ( k

w − 1) = (1− 2−w )(k − w)/w
There are (k/w − 1) digits
If the digit is zero (probability 1/m), we do not perform a multiplication
If the digit is not zero (probability (m − 1)/m), we perform a
multiplication

Total number of multiplications and squarings

T (k,w) = 2w − 2 + k − w + (1− 2−w )(k − w)/w

where w is the window length, w = 1, 2, 3, . . .
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The m-ary Method

The average number of multiplications for a given k is a function of
the window length w

For example, for k = 1024 and the window length as w = 1, 2, . . . , 8,
we find the average number of multiplications as

w=1,2,..,8

2 3 4 5 6 7 8

1300

1350

1400

1450

1500

1550

There is an optimal w for every k, which is not necessarily an integer
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The m-ary Method

The average number of multiplications and the optimal value of
(integer) w for k = 256, 512, 1024, 2048

k BM MM w∗ Savings %

256 383 325 4 15.1

512 767 635 5 17.2

1024 1535 1246 5 18.8

2048 3071 2439 6 20.6

k w∗ MM/BM

104 8 0.765882

108 19 0.705155

1016 42 0.682753

1032 93 0.673889

Asymptotic value of MM/BM is 2
3 as k →∞
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Reducing the Preprocessing Cost

The m-ary method with w -bit window computes all powers of M i

(mod n) for i = 2, 3, . . . , 2w − 1

This requires 2w − 2 multiplications

However, not all 2w window bit configurations may appear

For example, consider the following exponent with k = 16 and w = 4

1011 0011 0111 1000

These windows impliy that we need to compute Mv (mod n) for only
v = 3, 7, 8, 11 during preprocessing
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Reducing the Preprocessing Cost

We can judiciously compute the powers Mv (mod n) for only
v = 3, 7, 8, 11 using

M2 ← M ·M
M3 ← M2 ·M
M4 ← M2 ·M2

M7 ← M3 ·M4

M8 ← M4 ·M4

M11 ← M3 ·M8

This requires 6 multiplications

Computing all possible exponents would require 24 − 2 = 14
multiplications during preprocessing
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Sliding Window Algorithms

Based on data-dependent m-ary partitioning of the exponent

Constant-Length Nonzero Windows (CLNW):
Rule: Partition the exponent into zero words of any length and
nonzero words of constant length w

Variable-Length Nonzero Windows (VLNW):
Rule: Partition the exponent into zero words of length at least q and
nonzero words of length at most w
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Constant-Length Sliding Window Algorithm

The partitioning starts from the LSB and moves to the MSB

If the first bit of a window is 1, it is considered as a nonzero window
and w bits taken into a constant-length window

If the first bit of a window is 0, this bit an all adjacent zeros are taken
into a variable-length zero window

Example: d = (111001010001) for w = 3 as

Partitioning: 111 00 101 0 001

Example: d = (1010000000100001111) for w = 3

Partitioning: 101 00000 001 00 001 111
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Constant-Length Sliding Window Algorithm

Consider d = 3665 = 111 00 101 0 001

First we compute Mv (mod n) for the given window values using as
few multiplications as possible

Note that since the first bit every nonzero window is always 1, we
need to compute only for odd v values

In this case, we have v = 1, 5, 7, which can be computed as

M2 ← M ·M
M3 ← M2 ·M
M5 ← M3 ·M2

M7 ← M5 ·M2

This requires 4 multiplications

In the worst case, we need to perform 1 + 2w−2
2 multiplications
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Constant-Length Sliding Window Algorithm

The algorithm uses the precomputed window values, and computes
Md (mod n) by performing w consecutive squaring operations when
a nonzero window is scanned, skipping over zeros and performing a
squaring for every zero when a zero window is scanned

d = 3665 = 111 00 101 0 001

bits Step 2a Step 2b

111 M7 M7

00 (M7)4 = M28 M28

101 (M28)8 = M224 M224 ·M5 = M229

0 (M229)2 = M458 M458

001 (M458)8 = M3664 M3664 ·M1 = M3665
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Constant-Length Sliding Window Algorithm

The CLNW method reduces the average cost of the exponentiation
another 3-6% compared to the m-ary method

k m-ary w∗ CLNW w∗ %

128 167 4 156 4 6.6

256 325 4 308 5 5.2

512 635 5 607 5 4.4

1024 1246 5 1195 6 4.1

2048 2439 6 2360 7 3.2
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Variable-Length Sliding Window Algorithm

The partitioning starts from the LSB and moves to the MSB

If the first bit of a window is 1, it is considered as a nonzero window
and up to w bits taken into a constant-length window, until a zero is
observed

If the first bit of a window is 0, this bit an all adjacent at least q
zeros are taken into a variable-length zero window

Examples for w = 5 and q = 2

101 0 11101 00 101
10111 000000 1 00 111 000 1011

Examples for w = 10 and q = 4

1011011 0000 11 0000
11110111 00 1111110101 0000 11011
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Variable-Length Sliding Window Algorithm

The VLNW method reduces the average cost of the exponentiation
another 5-8% compared to the m-ary methid

m-ary VLNW for q∗

k T/k w∗ T/k w∗ %

128 1.31 4 1.20 4 7.8

256 1.27 4 1.18 4 6.8

512 1.24 5 1.16 5 6.4

1024 1.22 5 1.15 6 5.8

2048 1.19 6 1.13 6 5.0
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Addition-Subtraction Chains

An addition-subtraction chain is a sequence of integers

a0 a1 a2 · · · ar

starting from a0 = ±1 and ending with ar = d such that any ak is the
sum or the difference of two earlier integers ai and aj in the chain:

ak = ai ± aj for 0 < i , j < k

Example: d = 55

±1 2 4 8 7 14 28 56 55

An addition-subtraction chain yields an algorithm for computing
Md (mod n) or [d ]P given the integer d
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Canonical Encoding algorithm

The canonical encoding algorithm is an efficient way to generate
addition-subtraction chains

The canonical encoding algorithm computes the sparse signed-digit
representation of the exponent with digits {0, 1,−1} = {0, 1, 1̄}
It uses the property that a trail of adjacent 1s can be replaced with a
single 1 followed by 0s and then a single −1 = 1̄ digit

The property is based on the identity that for i > j

2i + 2i−1 + · · ·+ 2j+1 + 2j = 2i+1 − 2j

(111 · · · 111) = (1000 · · · 001̄)

The resulting encoded number may be 1 bit longer
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Canonical Encoding Algorithm

An example of the signed-digit representation

30 = (011110) = 24 + 23 + 22 + 21

30 = (10001̄0) = 25 − 21

Thus, we represent the integer using fewer nonzero bits

Arithmetic with signed-digit encoded integers have some advantages

However, we must deal with the negative digit 1̄ within the
exponentiation algorithm
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Canonical Encoding Algorithm

The variable ci is temporary, with starting value c0 = 0

The encoding proceeds from the LSB d to the MSB

di+1 di ci fi ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 1̄ 1

1 1 0 1̄ 1

1 1 1 0 1

Encoding of d = 3038

d 0 1 0 1 1 1 1 0 1 1 1 1 0

f 1 0 1̄ 0 0 0 0 1̄ 0 0 0 1̄ 0

c 0 1 1 1 1 1 1 1 1 1 1 1 0 0
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Canonical Encoding Algorithm

The canonical encoding algorithm optimally encodes the integer
exponent using the digit set {0, 1, 1̄}
It produces an encoding of d with minimal number of nonzero digits

Theorem

Given a k-bit integer d , the Canonical Encoding Algorithm generates its
encoding using the digit set {0, 1, 1̄} in such a way that its average
number of nonzero digits is minimal and it is equal to k/3.

A canonically encoded exponent never has two adjacent nonzero bits
(such as 11 or 1̄1 or 11̄)

Such representations are also called Non-Adjacent Forms (NAFs)
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The NAF (Non-Adjacent Form) Algorithm

There is another and equivalent algorithm for computing the
canonical encoding of d , referred as the NAF algorithm

NAF Algorithm
Input: d
Output: f = NAF(d)
1: i ← 0
2: while d ≥ 1
2a: if d is odd
2a1: fi ← 2− (d mod 4)
2a2: d ← d − fi
2b: else
2b1: fi ← 0
2c: i ← i + 1
2d: d ← d/2
3: return f
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NAF Algorithm Example

Given d = 3038, the computation of f = NAF(d)

d is odd d is even new
i d fi d fi d

0 3038 0 1519
1 1519 -1 1520 1520
2 1520 0 760
3 760 0 380
4 380 0 190
5 190 0 95
6 95 -1 96 96
7 48 0 24
8 24 0 12
9 12 0 6
10 6 0 3
11 3 -1 4 2
12 2 0 1
13 1 1 0 0

The result f = (101̄00001̄00001̄0)
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Canonical Encoding Binary Exponentiation

The number of squaring operations in the standard binary method of
exponentiation is equal to the number of bits in d

On the other hand, the number of multiplication operations in the
standard binary method of exponentiation is equal to the number of
1s in d , that is, its Hamming weight

Therefore, the standard binary method requires an average of k
squaring and k

2 multiplication operations

The canonical encoding binary method however uses the encoded
exponent f which has 2k/3 zero bits and k/3 nonzero bits

Therefore, the canonical encoding binary method k squaring and k
3

multiplication operations

However, it also requires M−1 (mod n) as input
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Canonical Encoding Binary Exponentiation

Canonical Encoding Binary Method
Input: M,M−1, d , n
Output: S = Md mod n
0: Obtain signed-digit encoding f of d
1: if fk−1 = 1 then S ← M else S ← 1
2: for i = k − 2 downto 0
2a: S ← S · S (mod n)
2b: if fi = 1 then S ← S ·M (mod n)

if fi = 1̄ then S ← S ·M−1 (mod n)
3: return S

This method for computing Md (mod n) requires M−1 (mod n)

This is as costly as computing the exponentiation Md (mod n)
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Addition-Subtraction Chains for Point Multiplication

The application of any addition-subtraction chain requires the
computation of the inverse (negative) of a point

For example, this addition-subtraction chain

1→ 2→ 4→ 8→ 16→ 15

computes [15]P by first computing

P → [2]P → [4]P → [8]P → [16]P → [15]P

However, at the last step we need to compute [16]P ⊕ (−P), which
requires the availability of −P
In elliptic curves, the inverse of a point is easily computed
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Canonical Encoding Binary Point Multiplication

For elliptic curves over GF(p): if P = (x , y), then −P = (x ,−y)

For elliptic curves over GF(2k): if P = (x , y), then −P = (x , x + y)

Input: P,−P, d
Output: Q = [d ]P
0: Obtain signed-digit encoding f of d
1: if fk−1 = 1 then Q ← P else Q ← O
2: for i = k − 2 downto 0
2a: Q ← Q ⊕ Q
2b: if fi = 1 then Q ← Q ⊕ P
2c: if fi = 1̄ then Q ← Q ⊕ (−P)
3: return Q
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Canonical Encoding Binary Point Multiplication

Exponent: d = 119 = (1110111)

Canonically encoded exponent: f = 10001̄001̄

We start with Q = P since f7 = 1

i fi Step 2a (Q) Step 2b or 2c (Q)

6 0 [1]P ⊕ [1]P = [2]P [2]P
5 0 [2]P ⊕ [2]P = [4]P [4]P
4 0 [4]P ⊕ [4]P = [8]P [8]P
3 1̄ [8]P ⊕ [8]P = [16]P [16]P ⊕ (−P) = [15]P
2 0 [15]P ⊕ [15]P = [30]P [30]P
1 0 [30]P ⊕ [30]P = [60]P [60]P
0 1̄ [60]P ⊕ [60]P = [120]P [120]P ⊕ (−P) = [119]P

The binary method requires 6 + 5 = 11 point additions+doublings

The canonical method requires 7 + 2 = 9 point additions+doublings
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The m-ary NAF Algorithm

The Canonical Encoding Algorithm produces the encoding of the
exponent with the digit set {0, 1, 1̄}
However, this algorithm does not extend to higher radix methods

If we can scan the exponent w bits at a time, similar to the m-ary
method for m = 2w , the resulting exponent may no longer be in
nan-adjacent form for radix 2w

For example, consider the binary exponent d = 3038 and its canonical
(binary) encoding as f = (101̄00001̄00001̄0)

If f is scanned 2, 3 or 4 bits at a time, we obtain

10 1̄0 00 01̄ 00 00 1̄0 = 22̄01̄002̄
10 1̄00 001̄ 000 01̄0 = 24̄01̄02̄
10 1̄000 01̄00 001̄0 = 28̄4̄2̄

Neither one of these encodings are in NAF
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The w -width NAF Algorithm

However, the m-ary version of the NAF algorithm directly and
correctly computes the w -width NAF of d for m = 2w

NAF Algorithm
Input: d ,w
Output: f = NAFw (d)
1: i ← 0
2: while d ≥ 1
2a: if d is odd
2a1: fi ← d (smod 2w )
2a2: d ← d − fi
2b: else
2b1: fi ← 0
2c: i ← i + 1
2d: d ← d/2
3: return f
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The w -width NAF Algorithm Properties

The m-ary version of the NAF algorithm differs from the binary
version only in Step 2a1 where the smod (signed mod) operation is
used, instead of the usual mod (unsigned mod) operation

The smod operation produces d (mod 2w ) in the least magnitude
representation, i.e., in the range [−2w−1, 2w−1)

For w = 3, the range would be [−4, 4) = {−4,−3,−2,−1, 0, 1, 2, 3}
Example: 10 (mod 8) is equal to 2, thus, 10 (smod 8) gives 2
Similarly: 13 (mod 8) is equal to 5, thus, 13 (smod 8) gives −3
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The w -width NAF Algorithm Properties

The length of the w -width NAF encoded exponent f is at most one
more than the length of the binary representation d

All digits fi of the w -width NAF encoded exponent f is odd, and at
most one of w consecutive digits is nonzero

The w -width NAF Algorithm produces a binary encoding, in the
sense that while the digits are not binary, but the weights of the digits
are in increasing powers of 2

For w = 1, the w -width NAF Algorithm produces the usual binary
encoding with digits {0, 1}
For w = 2, the w -width NAF Algorithm produces the canonical
binary encoding with digits {−1, 0, 1}
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The w -width NAF Algorithm Properties

For all w ≥ 2 values, the w -width NAF Algorithm produces the
w -width NAF binary-weighted encoding of d using zero and odd
nonzero values from the digit set

[−2w−1, 2w−1) = {−2w−1,−2w−1 + 1, . . . ,−1, 0, 1, . . . , 2w−1 − 1}

For w = 2, the digit set is [−2, 2) and fi ∈ {−1, 0, 1}
For w = 3, the digit set is [−4, 4) and fi ∈ {−3,−1, 0, 1, 3}
For w = 4, the digit set is [−8, 8) and
fi ∈ {−7,−5,−3,−1, 0, 1, 3, 5, 7}
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The w -width NAF Algorithm Examples

The w -width NAF encoding of d = 3038 = (101111011110)

w = 2 → 101̄00001̄00001̄0 = 212 − 210 − 26 − 21

w = 3 → 300001̄0001̄0 = 3 · 210 − 25 − 21

w = 4 → 300001̄0001̄0 = 3 · 210 − 25 − 21

w = 5 → 10000(15)0000(15)0 = 211 + 15 · 26 + 15 · 21

w = 6 → 300000000(17)0 = 3 · 210 − 17 · 21

The w -width NAF encoding of d = 2730 = (101010101010)

w = 2 → 101010101010 = 211 + 29 + 27 + 25 + 23 + 21

w = 3 → 3003̄003003̄0 = 3 · 210 − 3 · 27 + 3 · 24 − 3 · 21

w = 4 → 5000500050 = 5 · 29 + 5 · 25 + 5 · 21

w = 5 → 10000(11)0000(11)0 = 211 + 11 · 26 − 11 · 21

w = 6 → (21)00000(21)0 = 21 · 27 + 21 · 21
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The w -width NAF Point Multiplication

First we obtain the w -width NAF encoding f of the exponent d

Assume that the length of f is k

The digits of f are either zero or odd numbers in the range
fi ∈ [−2w−1, 2w−1)

During the pre-processing stage we compute [v ]P for
v = 1, 3, 5, . . . , 2w−1 − 1, i.e., only for odd values of v

We place them in a table T such that the v th row of the table
contains the point T (v) = [v ]P for v = 1, 3, 5, . . . , 2w−1 − 1

We use these values during the point multiplication algorithm

Furthermore, we perform a point doubling for every digit of f
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The w -width NAF Point Multiplication

First, compute w -width NAF encoding f of d , with length k

Then, compute T (v) = [v ]P for v = 1, 3, 5, . . . , 2w−1 − 1

Input: P, d , f ,T (v)
Output: Q = [d ]P
1: Q ← O
2: for i = k − 1 downto 0
2a: Q ← Q ⊕ Q
2b: v ← abs(fi )
2c: if fi > 0 then Q ← Q ⊕ T (v)
2d: if fi < 0 then Q ← Q ⊕ (−T (v))
3: return Q
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The w -width NAF Point Multiplication Example

Exponent: d = 2730 = (101010101010)

The 3-width NAF encoding f = (3003̄003003̄0)

The processing requires the computation of [v ]P for v = 1, 3

i fi Step 2a (Q) v Step 2c or 2d (Q)

10 3 O ⊕O = O 3 O + [3]P = [3]P
9 0 [3]P ⊕ [3]P = [6]P 0
8 0 [6]P ⊕ [6]P = [12]P 0
7 3̄ [12]P ⊕ [12]P = [24]P 3 [24]P ⊕ [−3]P = [21]P
6 0 [21]P ⊕ [21]P = [42]P 0
5 0 [42]P ⊕ [42]P = [84]P 0
4 3 [84]P ⊕ [84]P = [168]P 3 [168]P ⊕ [3]P = [171]P
3 0 [171]P ⊕ [171]P = [342]P 0
2 0 [342]P ⊕ [342]P = [684]P 0
1 3̄ [684]P ⊕ [684]P = [1368]P 3 [1368]P ⊕ [−3]P = [1365]P
0 0 [1365]P ⊕ [1365]P = [2730]P 0
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http://koclab.org


Exponentiation and Point Multiplication Integer, Finite Field, HW, SW

The w -width NAF Point Multiplication

The average number of nonzero digits in the w -width NAF encoded
k-digit exponent is k

w+1

For example, for w = 2, the probability of nonzero digit is equal to 1
3 ,

which is the canonical binary encoding algorithm

The pre-processing stage, i.e., the computation of [v ]P for
v = 1, 3, 5, . . . , 2w−1 − 1 requires 1 point doubling and
(2w−1 − 2)/2 = 2w−2 − 1 point additions

Since the length of the NAF exponent is k and the average number of
nonzero digits is k

w+1 , the number of point additions is k
w+1

Therefore, the w -width NAF point multiplication for k-bit NAF
exponent f requires 1 + k doublings and 2w−2 − 1 + k

w+1 additions
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Koblitz Curves and Frobenius Map

Koblitz curves are of the form

y2 + xy = x3 + ax2 + 1 for for a ∈ {0, 1}

There is an efficient algorithm for computing point multiplication
operation [d ]P for a given integer d and point P on a Koblitz curve

It is based on the Frobenius map τ(x , y) = (x2, y2) which satisfies

τ(τ(x , y))⊕ [2](x , y) = [µ]τ(x , y)

(x4, y4)⊕ [2](x , y) = [µ](x2, y2)

Here µ = (−1)1−a = ±1, in other words:

(x4, y4)⊕ [2](x , y) = ±(x2, y2)
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Point Multiplication on Koblitz Curves

Suppose that we need to compute [d ]P for an integer d

Every integer d has a τ -adic expansion:

d = d0 + d1τ + d2τ
2 + · · ·+ drτ

r for di ∈ {0, 1,−1, }

Here τ is the complex number

µ+
√

7j

2
where µ = (−1)1−a = ±1

We compute [d ]P using the Frobenius map as

[d ]P = [d0]P ⊕ [d1]τ(P)⊕ [d2]τ2(P)⊕ · · · ⊕ [dr ]τ r (P)
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Point Multiplication on Koblitz Curves

Since τ is a complex number, we are expanding the integer d in terms
of a sum the powers of τ , with coefficients di ∈ {0, 1,−1, }
The application of τ to a point P = (x , y) is accomplished by
squaring the coordinate values τ(x , y) = (x2, y2)

Squaring of a field element is essentially free when GF(2k) is
represented using a normal basis

More precisely, we replace the (signed) binary expansion of the
coefficient d with its (signed) τ -adic expansion

Given di = ±1, we compute

[di ]τ
i (P) = [di ]τ

i (x , y) = ±(x2
i
, y2

i
)

Therefore, we compute [d ]P by summing the nonzero terms
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The τ -adic NAF Expansion

For example, for a = 1 and thus µ = 1, we have

τ 5 − τ 3 =

(
1 +
√

7j

2

)5

−

(
1 +
√

7j

2

)3

= 8

Therefore, taking Q = −P, we compute [8]P using

[8]P = [τ 5 − τ 3]P

= [τ 5]P ⊕ [τ 3]Q

= (x2
5

, y25)⊕ (x2
3

, y23)

The computation of [8]P requires only one point addition

Terms such as x2
i

and y2
i

in the normal basis are computed by
left-rotating the field element vectors i times
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The τ -adic NAF Expansion

The expansion of the integer d in terms of the complex number τ with
coefficients di ∈ {0, 1,−1, } is called the τ -adic NAF (non-adjacent
form) of the integer d , since no two consecutive terms are nonzero

A NAF expansion (similar to the canonical encoding) produces a
signed-digit expansion with minimal number of nonzero digits

The use of τ -adic NAF gives a significant reduction in the number of
terms in the computation of [d ]P for the Koblitz curves

Theorem

Every integer has a unique τ -adic NAF.

The algorithm is given by J. E. Solinas
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The τ -adic NAF Expansion Examples

For a = 1, we take µ = 1
For a = 0, we take µ = −1

d = 8 : [1, 0,−1, 0, 0, 0]

d = 8 : τ 5 − τ 3

d = 9 : [1, 0,−1, 0, 0, 1]

d = 9 : τ 5 − τ 3 + 1

d = 31 : [1, 0, 1, 0,−1, 0,−1, 0, 0, 0, 0,−1]

d = 31 : τ 11 + τ 9 − τ 7 − τ 5 − 1
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