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Information Leakage Hypothesis

The power consumption of a chip depends on the manipulated data
and the executed instruction

Information leakage model (assumption): The consumed power is
related to the Hamming weight of data (or address, op code)

H(0) = 0

H(1) = H(2) = H(4) = H(8) = · · · = 1

H(3) = H(5) = H(6) = H(9) = · · · = 2

· · ·
H(Pi ⊕ Pi−1)
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Equipment Setup for Power Attacks
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Information Leakage

Load P1 and XOR with P2 = 0 such that P1 = 0, 1, 7, 255
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Information Leakage

H(P1 ⊕ 184) for P1 = 0, 1, 2, . . . , 255
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Simple Power Analysis (SPA)

The objective is to find the secret or private key

Algorithm is known

Implementation is unknown however some background is available

Reverse engineering is required

A single power curve may be sufficient

A known plaintext, ciphertext pair may be required
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SPA Attack on RSA Signature Operation

The signature computation

s = md (mod n)

n is large modulus, say 1024 bits or more

m is the message

m is the padded and hashed message

s is the signature

d is the private key such that e · d = 1 mod φ(n)

The attacker aims to obtain d
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SPA Attack on RSA Signature Operation

Implementation details:

n, m, s, and d are 128-byte buffers
the binary method of exponentiation
the exponent bits are scanned from MSB to LSB
k is the bit size of d

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. s ← 1
2. For i = k − 1 downto 0

s ← s · s (mod n)
If di = 1 then s ← s ·m (mod n)

3. Return s
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SPA Attack on RSA Signature Operation

Test key value: 0F 00 F0 00 FF 00
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SPA Attack on RSA Signature Operation

Test key value: 2E C6 91 5B F9 4A
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SPA Attack on RSA Signature Operation

SPA uses implementation details

SPA requires:

algorithm knowledge,
reverse engineering,
representation tuning, and
playing with implementation assumptions

SPA depends on

Algorithm implementation
Application constraints
The technology (electrical properties) of the chip
Possible countermeasures
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Countermeasures Against SPA Attack

What is a countermeasure?

Anything that foils the attack

Basic countermeasure: remove code branches that depend on secret
or private key bits

Advanced countermeasure:

Algorithm specification refinement
Data whitening (blinding)
Make changes in the instruction set
Electrical behavior changes (current scramblers, coprocessor usage)
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Differential Power Analysis

Also invented by Paul Kocher (1998)

A powerful and generic power attack

DPA uses statistics and signal processing

DPA requires known random messages

DPA targets a known algorithm

Applicable to a smart card

Big noise in crypto community

Big fear in the smart card industry
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Acquisition Procedure

Apply the algorithm L times such that 103 < L < 105

Cryptographic
Algorithm

Messages Ciphertexts

Key

Power 
Consumption

Curves

Mi Ci

Wi
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http://koclab.org


Power Attacks and Countermeasures Simple Power, Differential Power, Countermeasures

Selection and Prediction

Assume the message is processed by a known deterministic function f
(transfer, permutation)

Knowing the message, one can recompute its image through f offline

Mi −→ f −→ M ′i = f (Mi )

Now select a single bit from M ′ buffer

One can predict the true story of its variations for i = 0, 1, . . . , L− 1

i Message bit
0 2A5A058FC295ED 0
1 17BD152B330F0A 1
2 BD9D5EE99FE1F8 0
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DPA Operator and Curve

DPA curve construction
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DPA Operator and Curve

DPA curves for different selection bits
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DPA Operator and Curve

Spikes explanation: Hamming weight of the byte of the selection bits

∆ = E (HW1)− E (HW0) = 1

The peak height is proportional to
√
L

If prediction was wrong, the selection bit would random

E (HW1) = E (HW0) = 4 ⇒ ∆ = 0
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DPA on RSA

The entire key (the private exponent d) is not handled together,
rather bit by bit in progression

The prediction can be done by time slices

Prediction of the next bit requires the previous bit to be broken
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RSA Countermeasures

The binary method of exponentiation leaks information on private key
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http://koclab.org


Power Attacks and Countermeasures Simple Power, Differential Power, Countermeasures

Square-and-Multiply Algorithm

The binary method is also known as Square-and-multiply algorithm

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1
2. For i = k − 1 downto 0

R0 ← R2
0 (mod n)

If di = 1 then R0 ← R0 ·m (mod n)
3. Return R0

It performs exponentiation left to right

2 Temporary variables R0 and m

Susceptible to SPA-type attacks
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Square-and-Multiply Algorithm

The key: 2E C6 91 5B F9 4A
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Square-and-Multiply-Always Algorithm

One way to avoid leakage is to square and multiply at every step

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← 1
2. For i = k − 1 downto 0

R0 ← R2
0 (mod n)

b ← 1− di ; Rb ← Rb ·m (mod n)
3. Return R0

When b = 1 (i.e., di = 0), there is a dummy multiplication

The power trace is a regular succession of squares and multiplies

3 Temporary variables: R0, R1 and m

Not susceptible to SPA-type attacks

Susceptible to Safe-Error attacks
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Safe-Error Attacks

Timely induce a fault into ALU during multiply operation at step i

Check the output

If the result is incorrect (invalid signature or error notification), then
the error was effective ⇒ di = 1
If the result is correct, then the multiplication was dummy (safe error)
⇒ di = 0

Re-iterate the attack for another value of i
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Montgomery Powering Ladder

Montgomery exponentiation algorithm

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m
2. For i = k − 1 downto 0

b ← 1− di ; Rb ← R0 · R1 (mod n)
Rdi ← R2

di
(mod n)

3. Return R0

This algorithm behaves regularly without dummy operations

2 Temporary variables: R0 and R1

Not susceptible to SPA-type attacks

Not susceptible to Safe-Error attacks
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http://koclab.org


Power Attacks and Countermeasures Simple Power, Differential Power, Countermeasures

Square-and-Multiply Algorithm Example

e = 9 = (1001)2

Square-and-Multiply Algorithm

Start with R0 = 1

i di Step 2a Step 2b

3 1 R0 = R2
0 = 1 R0 = R0m = m

2 0 R0 = R2
0 = m2

1 0 R0 = R2
0 = m4

0 1 R0 = R2
0 = m8 R0 = R0m = m9

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Square-and-Multiply-Always Algorithm Example

e = 9 = (1001)2

Square-and-Multiply-Always Algorithm

Start with R0 = 1 and R1 = 1

i di b Step 2a Step 2b

3 1 0 R0 = R2
0 = 1 R0 = R0m = m

2 0 1 R0 = R2
0 = m2 R1 = R1m = m

1 0 1 R0 = R2
0 = m4 R1 = R1m = m2

0 1 0 R0 = R2
0 = m8 R0 = R0m = m9

Result: R0 = m9

Total of 4 squarings and 4 multiplications
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Montgomery Powering Ladder Algorithm Example

e = 9 = (1001)2

Montgomery Powering Ladder Algorithm

Start with R0 = 1 and R1 = m

i di b Step 2a Step 2b

3 1 0 R0 = R0R1 = m R1 = R2
1 = m2

2 0 1 R1 = R0R1 = m3 R0 = R2
0 = m2

1 0 1 R1 = R0R1 = m5 R0 = R2
0 = m4

0 1 0 R0 = R0R1 = m9 R1 = R2
1 = m10

Result: R0 = m9

Total of 4 squarings and 4 multiplications
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Comparing Exponentiation Algorithms

Temporary Number of
Algorithm Variables Squ & Mul

Square-and-Multiply 2 k + k/2
Square-and-Multiply-Always 3 k + k
Montgomery Powering Ladder 2 k + k

Are there better algorithms?

Is it possible to compute me (mod n) in a secure way, without
introducing extra multiplications?

The Atomic Square-and-Multiply algorithms by Marc Joye require
k + k/2 squarings and multiplications as in the classical (unprotected)
algorithm
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Atomic Square-and-Multiply Algorithm

Atomic Square-and-Multiply Algorithm by Marc Joye

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m ; i ← k − 1 ; b ← 0
2. While i ≥ 0

R0 ← R0 · Rb (mod n)
b ← b ⊕ di ; i ← i − b̄

3. Return R0

This algorithm behaves regularly without dummy operations

2 Temporary variables: R0 and R1
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Atomic Square-and-Multiply Algorithm Example

e = 9 = (1001)2

Atomic Square-and-Multiply Algorithm by Marc Joye

Start with R0 = 1, R1 = m, i = k − 1 = 3, and b = 0

i di b Step 2a Step 2b

3 1 0 R0 = R0R0 = 1 b = b ⊕ di = 1 ; i = i − b̄ = 3

3 1 1 R0 = R0R1 = m b = b ⊕ di = 0 ; i = i − b̄ = 2

2 0 0 R0 = R0R0 = m2 b = b ⊕ di = 0 ; i = i − b̄ = 1

1 0 0 R0 = R0R0 = m4 b = b ⊕ di = 0 ; i = i − b̄ = 0

0 1 0 R0 = R0R0 = m8 b = b ⊕ di = 1 ; i = i − b̄ = 0

0 1 1 R0 = R0R1 = m9 b = b ⊕ di = 0 ; i = i − b̄ = −1

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Right-to-Left Binary Algorithm

The classical Right-to-Left Binary Algorithm

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m ; i ← 0
2. While i ≤ k − 1

If di = 1 then R0 ← R0 · R1 (mod n)
R1 ← R2

1 (mod n) ; i ← i + 1
3. Return R0
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Right-to-Left Binary Algorithm Example

e = 9 = (1001)2

The classical Right-to-Left Binary Algorithm

Start with R0 = 1, R1 = m, and i = 0

i di Step 2a Step 2b

0 1 R0 = R0R1 = m R1 = R2
1 = m2 ; i = i + 1 = 1

1 0 R1 = R2
1 = m4 ; i = i + 1 = 2

2 0 R1 = R2
1 = m8 ; i = i + 1 = 3

3 1 R0 = R0R1 = m9 R1 = R2
1 = m16 ; i = i + 1 = 4

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Atomic Right-to-Left Binary Algorithm

The atomic Right-to-Left Binary Algorithm by Marc Joye

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m ; i ← 0 ; b ← 1
2. While i ≤ k − 1

b ← b ⊕ di
Rb ← RbR1 (mod n) ; i ← i + b

3. Return R0
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Atomic Right-to-Left Binary Algorithm Example

e = 9 = (1001)2

Atomic Right-to-Left Binary Algorithm by Marc Joye

Start with R0 = 1, R1 = m, i = 0, and b = 1

i di b Step 2a Step 2b

0 1 1 b = b ⊕ di = 0 R0 = R0R1 = m ; i = i + b = 0

0 1 0 b = b ⊕ di = 1 R1 = R1R1 = m2 ; i = i + b = 1

1 0 1 b = b ⊕ di = 1 R1 = R1R1 = m4 ; i = i + b = 2

2 0 1 b = b ⊕ di = 1 R1 = R1R1 = m8 ; i = i + b = 3

3 1 1 b = b ⊕ di = 0 R0 = R0R1 = m9 ; i = i + b = 3

3 1 0 b = b ⊕ di = 1 R1 = R1R1 = m16 ; i = i + b = 4

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Preventing Side-Channel Attacks

For SPA-type attacks: Use Montgomery ladder or Atomic algorithms
of Marc Joye

However, these algorithms are not sufficient to thwart DPA-like
attacks

To circumvent the DPA-type attacks, we use data whitening, or
randomization, or blinding

For RSA, randomization of m, d , or n is used in the computation of
s = md (mod n)
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DPA-Type Countermeasures — Randomizing m

For a random r compute

m∗ = r e ·m (mod n)
s∗ = (m∗)d (mod n)
s = s∗ · r−1 (mod n)

If e is unknown, compute

m∗ = r ·m (mod n)
s∗ = (m∗)d (mod n)
s = s∗ · r−d (mod n)

For a short random r < 2u, compute

m∗ = m + r · n
n∗ = 2u · n
s∗ = (m∗)d (mod n∗)
s = s∗ (mod n)
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DPA-Type Countermeasures — Randomizing d

For a random r compute

d∗ = d + r · φ(n)

s = md∗
(mod n)

If φ(n) is unknown, compute

d∗ = d + r · (e · d − 1)

s = md∗
(mod n)

If e is unknown, for random r < d , compute

d∗ = d − r

s∗1 = md∗
(mod n)

s∗2 = mr (mod n)

s = s∗1 · s∗2 (mod n)
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DPA-Type Countermeasures — Randomizing n

For short random numbers r1 and r2 > r1, compute

m∗ = m + r1 · n
n∗ = r2 · n
s∗ = (m∗)d (mod n∗)

s = s∗ (mod n)

For short random numbers r1 and r2 > r1, compute

m∗ = m + r1 · n
n∗ = r2 · n
s∗ = (m∗)d (mod n∗)

Y = (m∗)d mod φ(r2) (mod r2)

c = (S∗ − Y + 1) (mod r2)

s = (s∗)c (mod n)

Randomizing n also protects against fault attacks
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Final Recommendations Against Side-Channel Attacks

Always consider side-channel attacks when implementing
cryptographic functions

Check that the countermeasures do not introduce new vulnerabilities

Avoid decisional tests

Randomize execution

Combine hardware and software protections

Always prefer cryptographic standards
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