
Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Timing Attacks and Countermeasures

Cryptographic
Box

Messages Ciphertexts

Key

side-channel

Mi Ci

Adversary

http://koclab.org Çetin Kaya Koç Spring 2018 1 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Timing Attacks

Processing time depends on the value of the secret key bit

It leaks information about it

There are ways to measure it

Timing attack conditions

The processing should be monitored
Processing durations need to be recorded
Some basic computational and statistical tools are needed
Knowledge of the implementation will be required

http://koclab.org Çetin Kaya Koç Spring 2018 2 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Timing Attacks

The code starts unconditionally

The test is based on secret bit

Depending on the Boolean
condition the process may be
long (t1) or short (t2)

The code continues
unconditionally

Begin

Decision

Process2
Process1

End

True False

t2t1

http://koclab.org Çetin Kaya Koç Spring 2018 3 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Timing Attacks

The term “Timing Attack” was introduced by Paul Kocher in 1996

First practical attacks in Crypto 1997 Conference

Applicable to RSA and in fact all cryptosystems

Basic mathematical operations
Modular exponentiation
Cryptographic algorithms

Knowledge and variability of messages are needed

Time measurements must be accurate to within few clock cycles

http://koclab.org Çetin Kaya Koç Spring 2018 4 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Attacking RSA Algorithm

The standard RSA exponentiation s = md (mod n)

The Montgomery method for modular multiplication

Timing variations in Montgomery due to Subtraction Step

The binary method of exponentiation yields bits of d

http://koclab.org Çetin Kaya Koç Spring 2018 5 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

The Binary Method of Exponentiation

Input: m, d , n

m: message which is k bits

(d , n): the RSA private key, k bits each

Output: s = md (mod n)

m: signature which is k bits

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. s ← 1
2. For i = k − 1 downto 0

s ← s · s (mod n)
If di = 1 then s ← s ·m (mod n)

3. Return s

http://koclab.org Çetin Kaya Koç Spring 2018 6 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

The Montgomery Modular Multiplication

The Montgomery modular multiplication MonPro is a special,
high-speed modular multiplication algorithm

The function MonPro(a, b) computes a · b · r−1 (mod n)

Interestingly the algorithm does not need r−1 (mod n)

However, it requires another quantity n′ which is related to it

It is significantly faster than Multiply-and-Reduce algorithm

http://koclab.org Çetin Kaya Koç Spring 2018 7 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Classical Montgomery Algorithm

Peter Montgomery introduced his original algorithm in 1985

It produces a result in the range [0, 2n)

A subtraction may be required to fully reduce mod n

function MonPro(a, b)
Input: a, b, n, n′

Output: u = a · b · r−1 mod n
1: t ← a · b
2: m← t · n′ (mod r)
3: u ← (t + m · n)/r
4: if u ≥ n then u ← u − n
5: return u

http://koclab.org Çetin Kaya Koç Spring 2018 8 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

The Montgomery Modular Multiplication

Multiply step for bit di

If d [i ] = 1 then s = MonPro(s,m)

Step 1+2+3: The multiply-add steps of Montgomery multiplication

Step 4: If the result is larger than n, a subtraction by n

http://koclab.org Çetin Kaya Koç Spring 2018 9 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Attacking RSA Algorithm

Assume, we have obtain L message and signature pairs and their
timings (mj , sj , tj) such that the computation of sj = md

j (mod n)
requires tj seconds

The private key is unknown, and we are trying to determine it

Now assume, higher (i − 1) bits of the exponent d are discovered

That is, we know d [k − 1], d [k − 2], . . . , d [k − (i − 1)]

Knowing the message mj , we can compute the intermediate value
of the signature s∗j after the square operation for index (k − i)

http://koclab.org Çetin Kaya Koç Spring 2018 10 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Attacking RSA Algorithm

We can then determine whether the Montgomery multiplication
operation MonPro(s∗j ,mj) will cause a subtraction

However, we do not know the value of the bit d [k − i ]

If d [k − i ] = 0, there will not be a Montgomery multiplication (and
thus no subtraction either)

if d [k − i ] = 1, there will be a Montgomery multiplication and we
have determined whether there will be a subtraction or not

http://koclab.org Çetin Kaya Koç Spring 2018 11 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Description of the Attack

Let S the set of messages: S = {m1,m2, . . . ,mL}
Let T the set of timings: T = {t1, t2, . . . , tL}
Assume d [k − i ] = 1

Partition S into two disjoint subsets: S0 and S1 such that

S0 = {mj : MonPro(s∗j ,mj) does not have subtraction}
S1 = {mj : MonPro(s∗j ,mj) has subtraction}

Compute the mean time T 0 of the messages in S0
Compute the mean time T 1 of the messages in S1

http://koclab.org Çetin Kaya Koç Spring 2018 12 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Description of the Attack

Case d [k − i ] = 0
Global times for sets S0 and S1 are statistically indistinguishable
since the split is based on a multiplication which does not occur

Case d [k − i ] = 1
Global times for sets S0 and S1 show a statistical difference to the
optional multiplication since it does occur

Time measurements validate or invalidate the assumption:

If T 0 − T 1 � 0, the assumption is valid, that is d [k − i ] = 1

If T 0 − T 1 ≈ 0, the assumption is wrong, that is d [k − i ] = 0

http://koclab.org Çetin Kaya Koç Spring 2018 13 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Conclusions

For 128 bits, the attack recovers 2 bits/sec for L = 10, 000

For 512 bits, the attack recovers 1 bits/sec for L = 100, 000

Together with other side-channel attacks they become more efficient

It works against computers, servers, not just smart cards

A real threat for many devices and computers

http://koclab.org Çetin Kaya Koç Spring 2018 14 / 15

http://koclab.org


Timing Attacks and Countermeasures RSA, Montgomery Subtraction

Countermeasures

A basic countermeasure would be to create constant-time processing

Blinding (whitening or randomization) approaches also work

http://koclab.org Çetin Kaya Koç Spring 2018 15 / 15

http://koclab.org

