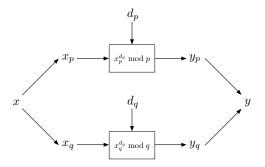
Fault Attacks and Countermeasures



Fault Attacks

- Safe-error attack was a type of fault attack
- Timely induce a fault into ALU during multiply operation at step i
- Check the output
 - If the result is incorrect (invalid signature or error notification), then the error was effective $\Rightarrow d_i = 1$
 - If the result is correct, then the multiplication was dummy (safe error) $\Rightarrow d_i = 0$
- Re-iterate the attack for another value of *i*
- It was introduced into the RSA when Square-and-Multiply-Always algorithm was used

Square-and-Multiply Algorithm

• The Square-and-multiply algorithm leaks information on private key

Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$
2. For $i = k - 1$ downto 0
 $R_0 \leftarrow R_0^2 \pmod{n}$
If $d_i = 1$ then $R_0 \leftarrow R_0 \cdot m \pmod{n}$
3. Return R_0

- It performs exponentiation left to right
- 2 Temporary variables R₀ and m
- Susceptible to SPA-type attacks

Square-and-Multiply-Always Algorithm

• One way to avoid leakage is to square and multiply at every step

Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$; $R_1 \leftarrow 1$
2. For $i = k - 1$ downto 0
 $R_0 \leftarrow R_0^2 \pmod{n}$
 $b \leftarrow 1 - d_i$; $R_b \leftarrow R_b \cdot m \pmod{n}$
3. Return R_0

• When b = 1 (i.e., $d_i = 0$), there is a dummy multiplication

- The power trace is a regular succession of squares and multiplies
- 3 Temporary variables: R_0 , R_1 and m
- Not susceptible to SPA-type attacks
- Susceptible to Safe-Error attacks

Safe-Error Attack

- Timely induce a fault into ALU during multiply operation at step i
- Check the output
 - If the result is incorrect (invalid signature or error notification), then the error was effective $\Rightarrow d_i = 1$
 - If the result is correct, then the multiplication was dummy (safe error) $\Rightarrow d_i = 0$
- Re-iterate the attack for another value of *i*

Montgomery Powering Ladder

Montgomery exponentiation algorithm

Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$; $R_1 \leftarrow m$
2. For $i = k - 1$ downto 0
 $b \leftarrow 1 - d_i$; $R_b \leftarrow R_0 \cdot R_1 \pmod{n}$
 $R_{d_i} \leftarrow R_{d_i}^2 \pmod{n}$
3. Return R_0

- This algorithm behaves regularly without dummy operations
- 2 Temporary variables: R₀ and R₁
- Not susceptible to SPA-type attacks
- Not susceptible to Safe-Error attacks

Safe-Error, GCD Attack

Square-and-Multiply Algorithm Example

- $e = 9 = (1001)_2$
- Square-and-Multiply Algorithm
- Start with $R_0 = 1$

• Result:
$$R_0 = m^9$$

Total of 4 squarings and 2 multiplications

Square-and-Multiply-Always Algorithm Example

•
$$e = 9 = (1001)_2$$

- Square-and-Multiply-Always Algorithm
- Start with $R_0 = 1$ and $R_1 = 1$

				Step 2b
3	1	0	$R_0 = R_0^2 = 1$	$R_0 = R_0 m = m$
2	0	1	$R_0 = R_0^2 = m^2$	$R_1 = R_1 m = m$
1	0	1	$R_0 = R_0^2 = m^4$	$R_0 = R_0 m = m$ $R_1 = R_1 m = m$ $R_1 = R_1 m = m^2$
0	1	0	$R_0 = R_0^2 = m^8$	$R_0 = R_0 m = m^9$

- Result: $R_0 = m^9$
- Total of 4 squarings and 4 multiplications

Montgomery Powering Ladder Algorithm Example

•
$$e = 9 = (1001)_2$$

- Montgomery Powering Ladder Algorithm
- Start with $R_0 = 1$ and $R_1 = m$

i	di	b	Step 2a	Step 2b
3	1	0	$R_0 = R_0 R_1 = m R_1 = R_0 R_1 = m^3$	$R_1 = R_1^2 = m^2$
2	0	1	$R_1 = R_0 R_1 = m^3$	$R_0 = R_0^2 = m^2$
1	0	1	$R_1 = R_0 R_1 = m^5$	$R_0 = R_0^2 = m^4$
0	1	0	$R_0 = R_0 R_1 = m^9$	$R_1 = R_1^2 = m^{10}$

• Result:
$$R_0 = m^9$$

Total of 4 squarings and 4 multiplications

General Fault Attack Assumptions

- Precise bit errors
 - The attacker can cause a fault in a single bit
 - Full control over the timing and location of the fault
- Precise byte errors
 - The attacker can cause a fault in a single byte
 - Full control over the timing but only partial control over the location (e.g., which byte is affected)
- Unknown byte errors
 - The attacker can cause a fault in a single byte
 - Partial control over the timing and location of the fault
- Random errors
 - Partial control over the timing and no control over the location

Computing RSA Signature with CRT

- Computation of a signature $y = x^d \pmod{n}$ using CRT
- First we compute x_p, d_p and x_q, d_q using

$$egin{array}{lll} x_p = x \pmod{p} & ext{and} & d_p = d \pmod{p-1} \ x_q = x \pmod{q} & ext{and} & d_q = d \pmod{q-1} \end{array}$$

• Then we compute y_p and y_q using

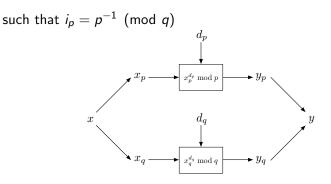
$$y_p = x_p^{d_p} \pmod{p}$$
 with $d_p = d \pmod{p-1}$
 $y_q = x_q^{d_q} \pmod{q}$ with $d_q = d \pmod{q-1}$

Computing RSA Signature with CRT

• We then apply the CRT to compute $y = x^d \pmod{n}$

$$y = CRT(y_p, y_q; p, q)$$

= $y_p + p \cdot [i_p \cdot (y_q - y_p) \mod q]$



Computing RSA Signature with CRT

• We can prove this expression by reducing mod p

$$y = y_p + p \cdot [i_p \cdot (y_q - y_p) \mod q] \pmod{p}$$

= $y_p \pmod{p}$

• To prove it mod q, we note that $i_p \cdot p = 1 + M_1 \cdot q$ for some M_1

$$y = y_p + (1 + M_1 \cdot q) \cdot (y_q - y_p) + M_2 \cdot q$$

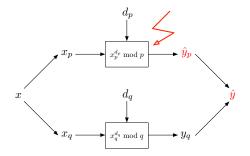
$$y = y_p + (1 + M_1 \cdot q) \cdot (y_q - y_p) + M_2 \cdot q \pmod{q}$$

$$= y_p + y_q - y_p \pmod{q}$$

$$= y_q \pmod{q}$$

GCD Attack

• Assume that due to the induced fault, y_p is incorrectly computed



• The prime factor q can be obtained using the incorrect \hat{y} as

$$gcd(\hat{y}^e - x \mod n, n) = q$$

GCD Attack – Proof

- If we had the correct y value, we would have $y^e = x \pmod{n}$
- Therefore, $gcd(y^e x \mod n, n) = gcd(0, n) = n$
- Due to incorrect \hat{y}^e value we have $\hat{y}^e \neq x \pmod{n}$
- However, \hat{y} is incorrect mod p but it is correct mod q

$$\hat{y}^e = \hat{y}^e_p \neq y^e_p \neq x_p \pmod{p}$$

$$\hat{y}^e = \hat{y}^e_q = y^e_q = x_q \pmod{q}$$

GCD Attack – Proof

Therefore

$$\hat{y}^e - x_p = \hat{y}_p^e - x_p \neq 0 \pmod{p} \iff p \nmid (\hat{y}^e - x)$$

$$\hat{y}^e - x_q = \hat{y}_q^e - x_q = 0 \pmod{q} \iff q \mid (\hat{y}^e - x)$$

- This implies $gcd(\hat{y}^e x \mod n, n) = q$
- Since $(\hat{y}^e x)$ and *n* are both divisible by *q*, their GCD is *q*

- Let p = 17 and q = 19, which gives $n = p \cdot q = 323$ and $\phi(n) = (p-1) \cdot (q-1) = 288$
- Select e = 23, since $gcd(e, \phi(n)) = gcd(23, 288) = 1$
- Compute $d = e^{-1} \pmod{n}$, which gives d = 263
- We select x = 100
- We compute $y = x^d \pmod{n}$ as y = 25

• In order to apply CRT, we first compute

• Mod *p* exponentiation:

$$y_p = x_p^{d_p} \pmod{p} \rightarrow y_p = 15^7 \mod{17} \rightarrow y_p = 8$$

• Mod *q* exponentiation:

$$y_q = x_q^{d_q} \pmod{q} \rightarrow y_q = 5^1 1 \mod{19} \rightarrow y_q = 6$$

• The CRT gives y as

$$y = y_p + p \cdot [i_p \cdot (y_q - y_p) \mod q]$$

= 8 + 17 \cdot [9 \cdot (6 - 8) \mod 19]
= 25

- Now assume that y_p was incorrectly computed as \hat{y}_p
- Instead of $y_p = 8$, we compute $\hat{y}_p = 10$ due to the induced fault
- This incorrect value $\hat{y}_p = 10$ would be used in the CRT computation

$$\hat{y} = \hat{y}_p + p \cdot [i_p \cdot (y_q - \hat{y}_p) \mod q]$$

= 10 + 17 \cdot [9 \cdot (6 - 10) \cdot mod 19]
= 44

• We would obtain an incorrect value $\hat{y} = 44$

- This result 44 is **incorrect** mod *n* since $44 \neq 100^{263} \pmod{323}$
- The correct result is $25 = 100^{263} \pmod{323}$
- This result 44 is **incorrect** mod *p* since 44 = 10 (mod 17) since the correct result is 25 = 8 (mod 17)
- However, this result 44 is correct mod q since 44 = 6 (mod 19) since the correct result is 25 = 6 (mod 19)

- This resulting incorrect value $\hat{y} = 44$ allows us to factor $n = p \cdot q$
- We obtain $q = \gcd(Q, n)$ such that $Q = \hat{y}^e x \pmod{n}$

$$Q = \hat{y}^{e} - x \pmod{n}$$

= 44²³ - 100 (mod 323)
= 228

$$q = gcd(Q, n)$$

= gcd(228, 323)
- 10

Countermeasures Against GCD Attack

Recomputation

- It does not detect permanent errors
- It doubles the computation time
- Verification
 - It may double the computation time
 - It requires the knowledge of e

Countermeasures Against GCD Attack

- Shamir's method
- Choose a small random r
- Compute $y_{rp} = x^{d \mod \phi(rp)} \mod rp$
- Compute $y_{rq} = x^{d \mod \phi(rq)} \mod rq$
- If $y_{rp} \neq y_{rq} \pmod{r}$, output ERROR and stop
- Output $y = CRT(y_{rp} \mod p, y_{rq} \mod q)$
- Shamir's method requires the knowledge of d
- However, in CRT, only d_p and d_q are available

RSA Error Detection – The Standard Mode

- Compute $z = x^d \pmod{rn}$
- Compute y_r = x^{d mod φ(r)} (mod r) (Note that r can be chosen prime, this φ(r) = r - 1)
- If $y_r \neq z \pmod{r}$, output ERROR and stop
- Output $y = z \pmod{n}$

RSA Error Detection – The CRT Mode

• Compute
$$z_1 = x^{d_p} \pmod{r_1 p}$$

- Compute $y_{r_1} = x^{d_p \mod \phi(r_1)} \pmod{r_1}$
- If $y_{r_1} \neq z_1 \pmod{r_1}$, output ERROR and stop

• Compute
$$z_2 = x^{d_q} \pmod{r_2 q}$$

• Compute
$$y_{r_2} = x^{d_q \mod \phi(r_2)} \pmod{r_2}$$

• If $y_{r_2} \neq z_2 \pmod{r_2}$, output ERROR and stop

• Output
$$y = CRT(z_1 \mod p, z_2 \mod q)$$