
Fault Attacks and Countermeasures Safe-Error, GCD Attack

Fault Attacks and Countermeasures

xp

xq

dp

dq

yp

yq

yx

xdp
p mod p

xdq
q mod q

http://koclab.org Çetin Kaya Koç Spring 2018 1 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Fault Attacks

Safe-error attack was a type of fault attack

Timely induce a fault into ALU during multiply operation at step i

Check the output

If the result is incorrect (invalid signature or error notification), then
the error was effective ⇒ di = 1
If the result is correct, then the multiplication was dummy (safe error)
⇒ di = 0

Re-iterate the attack for another value of i

It was introduced into the RSA when Square-and-Multiply-Always
algorithm was used

http://koclab.org Çetin Kaya Koç Spring 2018 2 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Square-and-Multiply Algorithm

The Square-and-multiply algorithm leaks information on private key

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1
2. For i = k − 1 downto 0

R0 ← R2
0 (mod n)

If di = 1 then R0 ← R0 ·m (mod n)
3. Return R0

It performs exponentiation left to right

2 Temporary variables R0 and m

Susceptible to SPA-type attacks

http://koclab.org Çetin Kaya Koç Spring 2018 3 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Square-and-Multiply-Always Algorithm

One way to avoid leakage is to square and multiply at every step

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← 1
2. For i = k − 1 downto 0

R0 ← R2
0 (mod n)

b ← 1− di ; Rb ← Rb ·m (mod n)
3. Return R0

When b = 1 (i.e., di = 0), there is a dummy multiplication

The power trace is a regular succession of squares and multiplies

3 Temporary variables: R0, R1 and m

Not susceptible to SPA-type attacks

Susceptible to Safe-Error attacks

http://koclab.org Çetin Kaya Koç Spring 2018 4 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Safe-Error Attack

Timely induce a fault into ALU during multiply operation at step i

Check the output

If the result is incorrect (invalid signature or error notification), then
the error was effective ⇒ di = 1
If the result is correct, then the multiplication was dummy (safe error)
⇒ di = 0

Re-iterate the attack for another value of i

http://koclab.org Çetin Kaya Koç Spring 2018 5 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Montgomery Powering Ladder

Montgomery exponentiation algorithm

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m
2. For i = k − 1 downto 0

b ← 1− di ; Rb ← R0 · R1 (mod n)
Rdi ← R2

di
(mod n)

3. Return R0

This algorithm behaves regularly without dummy operations

2 Temporary variables: R0 and R1

Not susceptible to SPA-type attacks

Not susceptible to Safe-Error attacks

http://koclab.org Çetin Kaya Koç Spring 2018 6 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Square-and-Multiply Algorithm Example

e = 9 = (1001)2

Square-and-Multiply Algorithm

Start with R0 = 1

i di Step 2a Step 2b

3 1 R0 = R2
0 = 1 R0 = R0m = m

2 0 R0 = R2
0 = m2

1 0 R0 = R2
0 = m4

0 1 R0 = R2
0 = m8 R0 = R0m = m9

Result: R0 = m9

Total of 4 squarings and 2 multiplications

http://koclab.org Çetin Kaya Koç Spring 2018 7 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Square-and-Multiply-Always Algorithm Example

e = 9 = (1001)2

Square-and-Multiply-Always Algorithm

Start with R0 = 1 and R1 = 1

i di b Step 2a Step 2b

3 1 0 R0 = R2
0 = 1 R0 = R0m = m

2 0 1 R0 = R2
0 = m2 R1 = R1m = m

1 0 1 R0 = R2
0 = m4 R1 = R1m = m2

0 1 0 R0 = R2
0 = m8 R0 = R0m = m9

Result: R0 = m9

Total of 4 squarings and 4 multiplications

http://koclab.org Çetin Kaya Koç Spring 2018 8 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Montgomery Powering Ladder Algorithm Example

e = 9 = (1001)2

Montgomery Powering Ladder Algorithm

Start with R0 = 1 and R1 = m

i di b Step 2a Step 2b

3 1 0 R0 = R0R1 = m R1 = R2
1 = m2

2 0 1 R1 = R0R1 = m3 R0 = R2
0 = m2

1 0 1 R1 = R0R1 = m5 R0 = R2
0 = m4

0 1 0 R0 = R0R1 = m9 R1 = R2
1 = m10

Result: R0 = m9

Total of 4 squarings and 4 multiplications

http://koclab.org Çetin Kaya Koç Spring 2018 9 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

General Fault Attack Assumptions

Precise bit errors

The attacker can cause a fault in a single bit
Full control over the timing and location of the fault

Precise byte errors

The attacker can cause a fault in a single byte
Full control over the timing but only partial control over the location
(e.g., which byte is affected)

Unknown byte errors

The attacker can cause a fault in a single byte
Partial control over the timing and location of the fault

Random errors

Partial control over the timing and no control over the location

http://koclab.org Çetin Kaya Koç Spring 2018 10 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Computing RSA Signature with CRT

Computation of a signature y = xd (mod n) using CRT

First we compute xp, dp and xq, dq using

xp = x (mod p) and dp = d (mod p − 1)

xq = x (mod q) and dq = d (mod q − 1)

Then we compute yp and yq using

yp = x
dp
p (mod p) with dp = d (mod p − 1)

yq = x
dq
q (mod q) with dq = d (mod q − 1)

http://koclab.org Çetin Kaya Koç Spring 2018 11 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Computing RSA Signature with CRT

We then apply the CRT to compute y = xd (mod n)

y = CRT(yp, yq ; p, q)

= yp + p · [ip · (yq − yp) mod q]

such that ip = p−1 (mod q)

xp

xq

dp

dq

yp

yq

yx

xdp
p mod p

xdq
q mod q

http://koclab.org Çetin Kaya Koç Spring 2018 12 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Computing RSA Signature with CRT

We can prove this expression by reducing mod p

y = yp + p · [ip · (yq − yp) mod q] (mod p)

= yp (mod p)

To prove it mod q, we note that ip · p = 1 + M1 · q for some M1

y = yp + (1 + M1 · q) · (yq − yp) + M2 · q
y = yp + (1 + M1 · q) · (yq − yp) + M2 · q (mod q)

= yp + yq − yp (mod q)

= yq (mod q)

http://koclab.org Çetin Kaya Koç Spring 2018 13 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack

Assume that due to the induced fault, yp is incorrectly computed

xp

xq

dp

dq

yq

x

xdp
p mod p

xdq
q mod q

ŷ

ŷp

The prime factor q can be obtained using the incorrect ŷ as

gcd(ŷ e − x mod n, n) = q

http://koclab.org Çetin Kaya Koç Spring 2018 14 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack – Proof

If we had the correct y value, we would have y e = x (mod n)

Therefore, gcd(y e − x mod n, n) = gcd(0, n) = n

Due to incorrect ŷ e value we have ŷ e 6= x (mod n)

However, ŷ is incorrect mod p but it is correct mod q

ŷ e = ŷ ep 6= y ep 6= xp (mod p)

ŷ e = ŷ eq = y eq = xq (mod q)

http://koclab.org Çetin Kaya Koç Spring 2018 15 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack – Proof

Therefore

ŷ e − xp = ŷ ep − xp 6= 0 (mod p) ⇐⇒ p - (ŷ e − x)

ŷ e − xq = ŷ eq − xq = 0 (mod q) ⇐⇒ q | (ŷ e − x)

This implies gcd(ŷ e − x mod n, n) = q

Since (ŷ e − x) and n are both divisible by q, their GCD is q

http://koclab.org Çetin Kaya Koç Spring 2018 16 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack Demonstration

Let p = 17 and q = 19, which gives n = p · q = 323 and
φ(n) = (p − 1) · (q − 1) = 288

Select e = 23, since gcd(e, φ(n)) = gcd(23, 288) = 1

Compute d = e−1 (mod n), which gives d = 263

We select x = 100

We compute y = xd (mod n) as y = 25

http://koclab.org Çetin Kaya Koç Spring 2018 17 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack Demonstration

In order to apply CRT, we first compute

xp = x mod p → xp = 100 mod 17 → xp = 15
dp = d mod (p − 1) → dp = 263 mod 16 → dp = 7

xq = x mod q → xq = 100 mod 19 → xq = 5
dq = d mod (q − 1) → dq = 263 mod 18 → dq = 11

ip = p−1 mod q → ip = 17−1 mod 19 → ip = 9

http://koclab.org Çetin Kaya Koç Spring 2018 18 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack Demonstration

Mod p exponentiation:

yp = x
dp
p (mod p) → yp = 157 mod 17 → yp = 8

Mod q exponentiation:

yq = x
dq
q (mod q) → yq = 511 mod 19 → yq = 6

The CRT gives y as

y = yp + p · [ip · (yq − yp) mod q]

= 8 + 17 · [9 · (6− 8) mod 19]

= 25

http://koclab.org Çetin Kaya Koç Spring 2018 19 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack Demonstration

Now assume that yp was incorrectly computed as ŷp

Instead of yp = 8, we compute ŷp = 10 due to the induced fault

This incorrect value ŷp = 10 would be used in the CRT computation

ŷ = ŷp + p · [ip · (yq − ŷp) mod q]

= 10 + 17 · [9 · (6− 10) mod 19]

= 44

We would obtain an incorrect value ŷ = 44

http://koclab.org Çetin Kaya Koç Spring 2018 20 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack Demonstration

This result 44 is incorrect mod n since 44 6= 100263 (mod 323)

The correct result is 25 = 100263 (mod 323)

This result 44 is incorrect mod p since 44 = 10 (mod 17) since the
correct result is 25 = 8 (mod 17)

However, this result 44 is correct mod q since 44 = 6 (mod 19) since
the correct result is 25 = 6 (mod 19)

http://koclab.org Çetin Kaya Koç Spring 2018 21 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

GCD Attack Demonstration

This resulting incorrect value ŷ = 44 allows us to factor n = p · q
We obtain q = gcd(Q, n) such that Q = ŷ e − x (mod n)

Q = ŷ e − x (mod n)

= 4423 − 100 (mod 323)

= 228

q = gcd(Q, n)

= gcd(228, 323)

= 19

http://koclab.org Çetin Kaya Koç Spring 2018 22 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Countermeasures Against GCD Attack

Recomputation

It does not detect permanent errors
It doubles the computation time

Verification

It may double the computation time
It requires the knowledge of e

http://koclab.org Çetin Kaya Koç Spring 2018 23 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

Countermeasures Against GCD Attack

Shamir’s method

Choose a small random r

Compute yrp = xd mod φ(rp) mod rp

Compute yrq = xd mod φ(rq) mod rq

If yrp 6= yrq (mod r), output ERROR and stop

Output y = CRT(yrp mod p, yrq mod q)

Shamir’s method requires the knowledge of d

However, in CRT, only dp and dq are available

http://koclab.org Çetin Kaya Koç Spring 2018 24 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

RSA Error Detection – The Standard Mode

Compute z = xd (mod rn)

Compute yr = xd mod φ(r) (mod r)
(Note that r can be chosen prime, this φ(r) = r − 1)

If yr 6= z (mod r), output ERROR and stop

Output y = z (mod n)

http://koclab.org Çetin Kaya Koç Spring 2018 25 / 26

http://koclab.org


Fault Attacks and Countermeasures Safe-Error, GCD Attack

RSA Error Detection – The CRT Mode

Compute z1 = xdp (mod r1p)

Compute yr1 = xdp mod φ(r1) (mod r1)

If yr1 6= z1 (mod r1), output ERROR and stop

Compute z2 = xdq (mod r2q)

Compute yr2 = xdq mod φ(r2) (mod r2)

If yr2 6= z2 (mod r2), output ERROR and stop

Output y = CRT(z1 mod p, z2 mod q)

http://koclab.org Çetin Kaya Koç Spring 2018 26 / 26

http://koclab.org

