Fault Attacks and Countermeasures Safe-Error, GCD Attack

Fault Attacks and Countermeasures

/va—> ad mod p —— Yp \

T dq Yy

N

q zZ“ mod ¢

http://koclab.org Cetin Kaya Kog Spring 2018 1/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Fault Attacks

Safe-error attack was a type of fault attack

Timely induce a fault into ALU during multiply operation at step /
Check the output

o If the result is incorrect (invalid signature or error notification), then
the error was effective = d; =1

o If the result is correct, then the multiplication was dummy (safe error)
=d =0

Re-iterate the attack for another value of /

It was introduced into the RSA when Square-and-Multiply-Always
algorithm was used

http://koclab.org Cetin Kaya Kog Spring 2018 2/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Square-and-Multiply Algorithm

o The Square-and-multiply algorithm leaks information on private key

Input: m, d = (dk-1,...,do)2, n
Output: s = m? (mod n)
1. Ro —1
2. Fori=k—1downto 0
Ro < R2 (mod n)
If di =1 then Ry < Ry - m (mod n)
3. Return Ry

o It performs exponentiation left to right
o 2 Temporary variables Ry and m
o Susceptible to SPA-type attacks

http://koclab.org Cetin Kaya Kog Spring 2018 3/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Square-and-Multiply-Always Algorithm

@ One way to avoid leakage is to square and multiply at every step

Input: m, d = (dk—1,...,do)2, n
Output: s =m? (mod n)
1. Ro +—1;R«+1
2. Fori=k—1downto 0
Ro < R3 (mod n)
b+ 1—d;; Ry + Rp-m (mod n)
3. Return Ry

When b =1 (i.e., di = 0), there is a dummy multiplication

The power trace is a regular succession of squares and multiplies
3 Temporary variables: Ry, Ry and m

Not susceptible to SPA-type attacks

Susceptible to Safe-Error attacks

http://koclab.org Cetin Kaya Kog Spring 2018 4/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Safe-Error Attack

o Timely induce a fault into ALU during multiply operation at step i
o Check the output

o If the result is incorrect (invalid signature or error notification), then
the error was effective = d; = 1

o If the result is correct, then the multiplication was dummy (safe error)
=d =0

o Re-iterate the attack for another value of /

http://koclab.org Cetin Kaya Kog Spring 2018 5/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Montgomery Powering Ladder

o Montgomery exponentiation algorithm

Input: m, d = (dk—1,...,do)2, n

Output: s =m? (mod n)

1. Ro +—1; Ri<m

2. Fori=k—1downto0
b« 1—d; Ry+ Ro-Ri (mod n)
Ry, + Rc?l; (mod n)

3. Return Ry

This algorithm behaves regularly without dummy operations
2 Temporary variables: Ry and R;
Not susceptible to SPA-type attacks

Not susceptible to Safe-Error attacks

http://koclab.org Cetin Kaya Kog Spring 2018 6/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Square-and-Multiply Algorithm Example

e e=9=(1001),
o Square-and-Multiply Algorithm
o Start with Ry =1

i|d,- | Step 2a |Step 2b

3|1 |R=RE=1 |[Ry=Rom=m
2 0 RQ—ROZm

10| R=R=m

0 1 R():Rg:ms Ro:Rom:mg

o Result: Ry = m°

o Total of 4 squarings and 2 multiplications

http://koclab.org Cetin Kaya Kog Spring 2018 7/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Square-and-Multiply-Always Algorithm Example

e e=9=(1001),
o Square-and-Multiply-Always Algorithm
o Start with Rg=1and R =1

i |d,- | b | Step 2a |Step 2b

3[1[0[R=RI=1 |Ry=Rom=m
2 0 1 R():Rg:m2 R1:R1m:m
1 0 1 R():Rg:m4 R1:R1m:m2
0 1 0 R():Rg:mS RO:ROm:m9

o Result: Ry = m°

o Total of 4 squarings and 4 multiplications

http://koclab.org Cetin Kaya Kog Spring 2018 8/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Montgomery Powering Ladder Algorithm Example

e =9 =(1001)
Montgomery Powering Ladder Algorithm

o Start with Rg=1and Ry = m
i |d,-| b|Step2a |Step2b
3/1|0|R=RRi=m |Ri=R=m?
2 0 1 R1:R0R1:m3 I'-\>0::"-\’g:m2
1 0 1 R1:R0R1:m R():Rg:m4
0 1 0 Ro = R()Rl = m9 Rl = R12 = m10

9

Result: Rp = m

Total of 4 squarings and 4 multiplications

http://koclab.org Cetin Kaya Kog Spring 2018 9/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

General Fault Attack Assumptions

Precise bit errors

o The attacker can cause a fault in a single bit

o Full control over the timing and location of the fault
Precise byte errors

o The attacker can cause a fault in a single byte
o Full control over the timing but only partial control over the location
(e.g., which byte is affected)

Unknown byte errors

o The attacker can cause a fault in a single byte
o Partial control over the timing and location of the fault

o Random errors
o Partial control over the timing and no control over the location

http://koclab.org Cetin Kaya Kog Spring 2018 10/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Computing RSA Signature with CRT

o Computation of a signature y = x¢ (mod n) using CRT

o First we compute x,, d, and x4, dg using

(mod p—1)
(mod g — 1)

xp=x (modp) and dp=d
xqg=x (modgq) and dy=d
@ Then we compute y, and y, using

Yp = xg" (mod p) with dy=d (mod p—1)
Vg = xg" (mod q) with dg=d (mod g—1)

http://koclab.org Cetin Kaya Kog Spring 2018 11/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Computing RSA Signature with CRT

o We then apply the CRT to compute y = x¢ (mod n)

y = CRT(¥p,¥q: P:q)
= Yp+tp-lip-(¥g— yp) mod q]

1

such that i, = p~* (mod q)

/ Zp zzv mod p Yp \
T dq Y

xq—> zgﬂ mod ¢ —>yq /

http://koclab.org Cetin Kaya Kog Spring 2018 12/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Computing RSA Signature with CRT

@ We can prove this expression by reducing mod p

y = yptplip-(vg—yp) mod g] (mod p)
= Yp (mod p)

o To prove it mod g, we note that i, - p =1+ M - g for some M;
y = Yp+(1+M-q) (yg—yp) +M2-q
y = Yp+(@+M-q)-(vg—yp) +M2-q (mod q)

= Yp+¥q—yp (modq)
= yq (mod q)

http://koclab.org Cetin Kaya Kog Spring 2018 13/26

http://koclab.org

Fault Attacks and Countermeasures

GCD Attack

Safe-Error, GCD Attack

@ Assume that due to the induced fault, y, is incorrectly computed

Tp ——>

<

— Yp

x

/
N\

Lg ——>

zg" mod ¢

\
S

@ The prime factor g can be obtained using the incorrect y as

ged(y€ — xmod n, n) =gq

http://koclab.org Cetin Kaya Kog Spring 2018

14/ 26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack — Proof

If we had the correct y value, we would have y¢ = x (mod n)

Therefore, ged(y® — x mod n, n) = ged(0,n) = n

Due to incorrect y€ value we have ¢ # x (mod n)

However, ¥ is incorrect mod p but it is correct mod g

¥ = 95 # y5 # X (modp)
Y = 95 = ¥g = xq (modq)

http://koclab.org Cetin Kaya Kog Spring 2018 15/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack — Proof

o Therefore

e

Vo —xp # 0 (mod p) <= pf(y°—x

Jg—% =0 (modq) <= gq](

@ This implies gcd(y¢ — x mod n, n) =g

e

)’}_

@ Since (y¢ — x) and n are both divisible by g, their GCD is g

http://koclab.org

Cetin Kaya Kog

Spring 2018

16/ 26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack Demonstration

o Let p =17 and g = 19, which gives n = p- g = 323 and
¢(n)=(p—1)-(qg—1) =288

o Select e = 23, since gcd(e, ¢(n)) = gecd(23,288) =1

o Compute d = e~ (mod n), which gives d = 263

o We select x =100

o We compute y = x¢ (mod n) as y = 25

http://koclab.org Cetin Kaya Kog Spring 2018 17 /26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack Demonstration

@ In order to apply CRT, we first compute

Xp = x mod p — Xp=100mod 17 — x, =15
dp=dmod(p—1) — d,=263mod16 — dp=7
Xg = X mod q — Xg=100mod 19 — x;=05
dg=dmod(q—1) — dy=263mod18 — d;=11
Ip = p~! mod g - Iy = 17 'mod19 — b =29

http://koclab.org Cetin Kaya Kog Spring 2018 18 /26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack Demonstration

o Mod p exponentiation:

Yp =Xg” (mod p) — yp= 15" mod 17 — yp=28
o Mod g exponentiation:

Yo =" (mod q) — ys=51mod19 — y,=6
o The CRT gives y as

y = Yp+p-lip-(yqg—yp) mod q]
— 84+17-[9- (6 —8) mod 19]
= 25

http://koclab.org Cetin Kaya Kog Spring 2018 19/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack Demonstration

o Now assume that y, was incorrectly computed as y,
o Instead of y, = 8, we compute §, = 10 due to the induced fault
@ This incorrect value y, = 10 would be used in the CRT computation

A~

vy = Jpt+p lip-(vg— 9p) mod q]
— 104+17-9- (6 — 10) mod 19]
= 44

o We would obtain an incorrect value y = 44

http://koclab.org Cetin Kaya Kog Spring 2018 20/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack Demonstration

This result 44 is incorrect mod n since 44 # 100%%3 (mod 323)
o The correct result is 25 = 1002%3 (mod 323)

This result 44 is incorrect mod p since 44 = 10 (mod 17) since the
correct result is 25 = 8 (mod 17)

However, this result 44 is correct mod g since 44 = 6 (mod 19) since
the correct result is 25 = 6 (mod 19)

http://koclab.org Cetin Kaya Kog Spring 2018 21/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

GCD Attack Demonstration

o This resulting incorrect value y = 44 allows us to factor n=p-q
o We obtain g = gcd(Q, n) such that Q = y¢ — x (mod n)

Q = y°—x (mod n)
= 44 -100 (mod 323)
= 228

q = ng(Qv n)
= gcd(228,323)
= 19

http://koclab.org Cetin Kaya Kog Spring 2018 22/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Countermeasures Against GCD Attack

o Recomputation

o It does not detect permanent errors
o It doubles the computation time

o Verification

o It may double the computation time
o It requires the knowledge of e

http://koclab.org Cetin Kaya Kog Spring 2018 23/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

Countermeasures Against GCD Attack

Shamir's method

Choose a small random r

Compute y,, = xd mod &(P) mod rp

Compute y,q = xd mod 6(ra) mod rq

If yp # Yrq (mod r), output ERROR and stop
Output y = CRT(y,, mod p, yq mod q)

Shamir's method requires the knowledge of d

o However, in CRT, only d, and dj are available

http://koclab.org Cetin Kaya Kog Spring 2018 24 /26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

RSA Error Detection — The Standard Mode

Compute z = x4 (mod rn)

Compute y, = x4 ™4 #() (mod r)
(Note that r can be chosen prime, this ¢(r) = r — 1)

If y, # z (mod r), output ERROR and stop
Output y = z (mod n)

http://koclab.org Cetin Kaya Kog Spring 2018 25/26

http://koclab.org

Fault Attacks and Countermeasures | Safe-Error, GCD Attack

RSA Error Detection — The CRT Mode

o Compute z; = x% (mod rip)

o Compute y,, = x% md &) (mod r)

o If y, # z1 (mod r1), output ERROR and stop
o Compute zp = x% (mod rq)

Compute y,, = xd mod &(2) (mod r,)
If y, # zo (mod rp), output ERROR and stop

Output y = CRT(z; mod p, zo mod q)

http://koclab.org Cetin Kaya Kog Spring 2018 26/26

http://koclab.org

