
Linear Congruential Generators LCG, GLIBC, Inversion

Linear Congruential Generators

http://koclab.org Çetin Kaya Koç Spring 2018 1 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Linear Congruential Generators

A linear congruential generator produces a sequence of integers xi for
i = 1, 2, . . . starting with the given initial (seed) value x0 as

xi+1 = a · xi + b (mod n)

where the multiplication and addition operation is performed modulo
n, and therefore, xi ∈ Zn

This is a deterministic algorithm; the same xi value will always
produce the same xi+1 value, and the same seed x0 will produce the
same sequence x1, x2, . . .

There are only finitely many xi ∈ Zn, and the sequence will repeat

The period of the sequence is w such that xi+w = xi for any i ≥ 0

http://koclab.org Çetin Kaya Koç Spring 2018 2 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Linear Congruential Generators

For (a, b, n, x0) = (3, 4, 15, 1), i.e., a = 3, b = 4, 15, and x0 = 1, we
obtain the sequence: 1, 7, 10, 4, 1, 7, 10, 4 . . .
The period is w = 4

For (a, b, n, x0) = (3, 4, 15, 2), we obtain the sequence:
2, 10, 4, 1, 7, 10, 4, 1, 7, . . .
The period is w = 4

(3, 4, 15, 1) (3, 4, 15, 2)

http://koclab.org Çetin Kaya Koç Spring 2018 3 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Linear Congruential Generators

For (a, b, n, x0) = (3, 4, 17, 1), we obtain the sequence:
1, 7, 8, 11, 3, 13, 9, 14, 12, 6, 5, 2, 10, 0, 4, 16, 1, 7, 8 . . .
The period is w = 16

For (a, b, n) = (2, 4, 17), and x0 = 2, we obtain the sequence:
1, 6, 16, 2, 8, 3, 10, 7, 1, 6, 16, 2, . . .
The period is w = 8

(3, 4, 17, 1) (2, 4, 17, 2)

http://koclab.org Çetin Kaya Koç Spring 2018 4 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Period of LCGs

Theorem

Given a LCG with parameters (a, b, p) such that p is prime, the period w
is equal to the order of the element a in the multiplicative group Z∗

p for all
x0 seed values, except the period is 1 if x0 = −(a− 1)−1 · b mod p.

The group order is p − 1

The period w is a divisor of p − 1

The order of a primitive element is p − 1

The maximum period w = p − 1 occurs when a is a primitive

The theorem states that, if the starting point is

x0 = −(a− 1)−1 · b mod p

then the period is w = 1

This is called “bad seed” since it causes minimum period w = 1

http://koclab.org Çetin Kaya Koç Spring 2018 5 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Bad Seed

Assume x0 = −(a− 1)−1 · b (mod p)

Write this as x0 = ub (mod p) where u = −(a− 1)−1 (mod p)

This implies u · (a− 1) = −1, and thus, au = u − 1

By starting with x0 = ub, we obtain

x0 = ub (mod p)

x1 = ax0 + b (mod p)

= aub + b (mod p)

= (au + 1)b (mod p)

= (u − 1 + 1)b (mod p)

= ub

Therefore, all subsequent xi s will be equal to ub

The period w = 1

http://koclab.org Çetin Kaya Koç Spring 2018 6 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Period of LCGs

For (a, b, n) = (3, 4, 17), the order of the group is equal 16

The element a = 3 is primitive since

{31, 32, 33, . . . , 316} = {3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1}

The bad seed value is

x0 = −(a− 1)−1 · b (mod 17)

= −(3− 1)−1 · 4 (mod 17)

= −2−1 · 4 (mod 17)

= 15 (mod 17)

When x0 = 15, we obtain the sequence: 15, 15, 15, . . .

When x0 = 15, the period is w = 1

http://koclab.org Çetin Kaya Koç Spring 2018 7 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

The LCG for (a, b, n, x0) = (5, 0, 47, 1)

If we select b = 0, the bad seed value for any n will always be
x0 = −(a− 1)−1 · b = 0 (mod n) for any a or n

Therefore, it would be easy to detect and avoid the bad seed 0

For example, for (a, b, n, x0) = (5, 0, 47, 1), we obtain the maximal
period since 5 is a primitive root mod 47, and the bad seed is
automatically avoided for a nonzero x0

(5, 0, 47, 1)

http://koclab.org Çetin Kaya Koç Spring 2018 8 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

A Practical LCG

Since our processors have fixed data length, it is a good idea to select
a prime as large as the word size, since we will perform mod p
arithmetic

It turns out that 231 − 1 = 2, 147, 483, 647 is a prime number;
furthermore, a suitable primitive element in Zp for p = 231 − 1 is
found as a = 75 = 16, 807

The primitive root a is chosen to be near the square root of p,
therefore, we have a good, practical, general-purpose LCG, given as

xi+1 = a · xi (mod p)

p = 231 − 1 = 2, 147, 483, 647

a = 75 = 16, 807

Since a is a primitive element, the period of LCG is w = 231 − 2

http://koclab.org Çetin Kaya Koç Spring 2018 9 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Cryptographic Strength of LCGs

Does the LCG satisfy requirements R1 and R2?

Analysis and experiments show that LCGs with large p (such as the
previous practical LCG) are (almost) acceptable as statistically
random, but there are some deficiencies

Unfortunately, the LCGs do not satisfy R2 since they are is highly
predictable: Assuming a and p are known, given a single element xi ,
any future element of the sequence can be computed as
xi+k = akxi mod n

Similarly, given xi , any past element of the sequence can be computed
as xi−k = a−kxi = (a−1)k mod n

Inversion: the seed x0 can be computed if any element xi of the
sequence is known, by working back from i down to 0

http://koclab.org Çetin Kaya Koç Spring 2018 10 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Cryptographic Strength of LCGs

In general, we need to assume that a and p are fixed parameters of
the RNG and therefore they are not changeable, i.e., they are not part
of the key (x0, the seed) — they can be discovered by reverse
engineering

If we can bundle a and p with the seed x0, then we can claim more
security — it would be much harder to discover the key (a, p, and x0)
given a limited number of elements xi from the sequence x1, x2, . . .

Note that xi+1 = a · xi mod p implies xi+1 = a · xi + N · p for some
integer N; however, N is different for every pair (xi+1, xi ), we have

xi+1 = a · xi + Ni · p

and therefore, if we have k pairs of the known elements (xj , xk) then
we will also have k + 2 unknowns, i.e., a, p, and Ni for i = 1, 2, . . . , k

http://koclab.org Çetin Kaya Koç Spring 2018 11 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

Cryptographic Strength of LCGs

Still, equations of the form xi+1 = a · xi + Ni · p can be solved using
lattice reduction techniques, and therefore, we do not have strong
assumptions of cryptographic strength

There is also practical constraint in a LCG with all three parameters
(a, p, x0) are considered as the key

We know that p has to be a prime and a has to be a primitive
element of the group, that means a key generation algorithm has
needs to incorporate these properties and generate such keys

On the other hand, in a LCG with fixed parameters (a, p) we need not
worry about key with special properties — the only key, the seed x0,
is just a random integer: any integer would be fine; also, since b = 0,
the only “bad seed” is 0, and easy to avoid

http://koclab.org Çetin Kaya Koç Spring 2018 12 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

GLIBC random()

The GNU C library’s random() function is a LCG with three steps

The first step is based on the prime modulus p = 231 − 1 and the
primitive element a = 16, 807

Given the seed value s, the first step computes 33 elements
x1, x2, . . . , x33:

x0 = s

xi = a · xi−1 (mod p) for i = 1, 2, . . . , 30

x31 = x0

x32 = x1

x33 = x2

http://koclab.org Çetin Kaya Koç Spring 2018 13 / 14

http://koclab.org


Linear Congruential Generators LCG, GLIBC, Inversion

GLIBC random()

The second step is based on the addition operation mod q = 232

In the second step, new xi values are computed for i = 34, 35, . . . , 343

xi = xi−3 + xi−31 (mod q) for i = 34, 35, . . . , 343

In the final step, the output values are generated using the previous
mod q addition operation and the logical right shift operation (·)rs as
follows

xi = xi−3 + xi−31 (mod q) for i ≥ 344

rj = (xj+344)rs for i ≥ 0

Inversion: Two consecutive different moduli and the right shift make
the inversion more difficult, however, since there are 232 different seed
values, exhaustive search is possible

http://koclab.org Çetin Kaya Koç Spring 2018 14 / 14

http://koclab.org

