Linear Congruential Generators

Linear Congruential Generators

- A linear congruential generator produces a sequence of integers x_{i} for $i=1,2, \ldots$ starting with the given initial (seed) value x_{0} as

$$
x_{i+1}=a \cdot x_{i}+b \quad(\bmod n)
$$

where the multiplication and addition operation is performed modulo n, and therefore, $x_{i} \in \mathcal{Z}_{n}$

- This is a deterministic algorithm; the same x_{i} value will always produce the same x_{i+1} value, and the same seed x_{0} will produce the same sequence x_{1}, x_{2}, \ldots
- There are only finitely many $x_{i} \in \mathcal{Z}_{n}$, and the sequence will repeat
- The period of the sequence is w such that $x_{i+w}=x_{i}$ for any $i \geq 0$

Linear Congruential Generators

- For $\left(a, b, n, x_{0}\right)=(3,4,15,1)$, i.e., $a=3, b=4,15$, and $x_{0}=1$, we obtain the sequence: $1,7,10,4,1,7,10,4 \ldots$
The period is $w=4$
- For $\left(a, b, n, x_{0}\right)=(3,4,15,2)$, we obtain the sequence: $2,10,4,1,7,10,4,1,7, \ldots$
The period is $w=4$

$(3,4,15,1)$

$(3,4,15,2)$

Linear Congruential Generators

- For $\left(a, b, n, x_{0}\right)=(3,4,17,1)$, we obtain the sequence: $1,7,8,11,3,13,9,14,12,6,5,2,10,0,4,16,1,7,8 \ldots$ The period is $w=16$
- For $(a, b, n)=(2,4,17)$, and $x_{0}=2$, we obtain the sequence: $1,6,16,2,8,3,10,7,1,6,16,2, \ldots$
The period is $w=8$

$(3,4,17,1)$

$(2,4,17,2)$

Period of LCGs

Theorem

Given a LCG with parameters (a, b, p) such that p is prime, the period w is equal to the order of the element a in the multiplicative group \mathcal{Z}_{p}^{*} for all x_{0} seed values, except the period is 1 if $x_{0}=-(a-1)^{-1} \cdot b \bmod p$.

- The group order is $p-1$
- The period w is a divisor of $p-1$
- The order of a primitive element is $p-1$
- The maximum period $w=p-1$ occurs when a is a primitive
- The theorem states that, if the starting point is

$$
x_{0}=-(a-1)^{-1} \cdot b \bmod p
$$

then the period is $w=1$

- This is called "bad seed" since it causes minimum period $w=1$

Bad Seed

- Assume $x_{0}=-(a-1)^{-1} \cdot b(\bmod p)$
- Write this as $x_{0}=u b(\bmod p)$ where $u=-(a-1)^{-1}(\bmod p)$
- This implies $u \cdot(a-1)=-1$, and thus, $a u=u-1$
- By starting with $x_{0}=u b$, we obtain

$$
\begin{aligned}
x_{0} & =u b(\bmod p) \\
x_{1} & =a x_{0}+b(\bmod p) \\
& =a u b+b(\bmod p) \\
& =(a u+1) b(\bmod p) \\
& =(u-1+1) b(\bmod p) \\
& =u b
\end{aligned}
$$

- Therefore, all subsequent $x_{i} s$ will be equal to $u b$
- The period $w=1$

Period of LCGs

- For $(a, b, n)=(3,4,17)$, the order of the group is equal 16
- The element $a=3$ is primitive since

$$
\left\{3^{1}, 3^{2}, 3^{3}, \ldots, 3^{16}\right\}=\{3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1\}
$$

- The bad seed value is

$$
\begin{aligned}
x_{0} & =-(a-1)^{-1} \cdot b \quad(\bmod 17) \\
& =-(3-1)^{-1} \cdot 4 \quad(\bmod 17) \\
& =-2^{-1} \cdot 4 \quad(\bmod 17) \\
& =15(\bmod 17)
\end{aligned}
$$

- When $x_{0}=15$, we obtain the sequence: $15,15,15, \ldots$
- When $x_{0}=15$, the period is $w=1$

The LCG for $\left(a, b, n, x_{0}\right)=(5,0,47,1)$

- If we select $b=0$, the bad seed value for any n will always be $x_{0}=-(a-1)^{-1} \cdot b=0(\bmod n)$ for any a or n
- Therefore, it would be easy to detect and avoid the bad seed 0
- For example, for $\left(a, b, n, x_{0}\right)=(5,0,47,1)$, we obtain the maximal period since 5 is a primitive root mod 47, and the bad seed is automatically avoided for a nonzero x_{0}

$(5,0,47,1)$

A Practical LCG

- Since our processors have fixed data length, it is a good idea to select a prime as large as the word size, since we will perform $\bmod p$ arithmetic
- It turns out that $2^{31}-1=2,147,483,647$ is a prime number; furthermore, a suitable primitive element in \mathcal{Z}_{p} for $p=2^{31}-1$ is found as $a=7^{5}=16,807$
- The primitive root a is chosen to be near the square root of p, therefore, we have a good, practical, general-purpose LCG, given as

$$
\begin{aligned}
x_{i+1} & =a \cdot x_{i} \quad(\bmod p) \\
p & =2^{31}-1=2,147,483,647 \\
a & =7^{5}=16,807
\end{aligned}
$$

Since a is a primitive element, the period of LCG is $w=2^{31}-2$

Cryptographic Strength of LCGs

- Does the LCG satisfy requirements R1 and R2?
- Analysis and experiments show that LCGs with large p (such as the previous practical LCG) are (almost) acceptable as statistically random, but there are some deficiencies
- Unfortunately, the LCGs do not satisfy R2 since they are is highly predictable: Assuming a and p are known, given a single element x_{i}, any future element of the sequence can be computed as $x_{i+k}=a^{k} x_{i} \bmod n$
- Similarly, given x_{i}, any past element of the sequence can be computed as $x_{i-k}=a^{-k} x_{i}=\left(a^{-1}\right)^{k} \bmod n$
- Inversion: the seed x_{0} can be computed if any element x_{i} of the sequence is known, by working back from i down to 0

Cryptographic Strength of LCGs

- In general, we need to assume that a and p are fixed parameters of the RNG and therefore they are not changeable, i.e., they are not part of the key (x_{0}, the seed) - they can be discovered by reverse engineering
- If we can bundle a and p with the seed x_{0}, then we can claim more security - it would be much harder to discover the key (a, p, and x_{0}) given a limited number of elements x_{i} from the sequence x_{1}, x_{2}, \ldots
- Note that $x_{i+1}=a \cdot x_{i} \bmod p$ implies $x_{i+1}=a \cdot x_{i}+N \cdot p$ for some integer N; however, N is different for every pair $\left(x_{i+1}, x_{i}\right)$, we have

$$
x_{i+1}=a \cdot x_{i}+N_{i} \cdot p
$$

and therefore, if we have k pairs of the known elements $\left(x_{j}, x_{k}\right)$ then we will also have $k+2$ unknowns, i.e., a, p, and N_{i} for $i=1,2, \ldots, k$

Cryptographic Strength of LCGs

- Still, equations of the form $x_{i+1}=a \cdot x_{i}+N_{i} \cdot p$ can be solved using lattice reduction techniques, and therefore, we do not have strong assumptions of cryptographic strength
- There is also practical constraint in a LCG with all three parameters (a, p, x_{0}) are considered as the key
- We know that p has to be a prime and a has to be a primitive element of the group, that means a key generation algorithm has needs to incorporate these properties and generate such keys
- On the other hand, in a LCG with fixed parameters (a, p) we need not worry about key with special properties - the only key, the seed x_{0}, is just a random integer: any integer would be fine; also, since $b=0$, the only "bad seed" is 0 , and easy to avoid

GLIBC random()

- The GNU C library's random() function is a LCG with three steps
- The first step is based on the prime modulus $p=2^{31}-1$ and the primitive element $a=16,807$
- Given the seed value s, the first step computes 33 elements $x_{1}, x_{2}, \ldots, x_{33}$:

$$
\begin{aligned}
x_{0} & =s \\
x_{i} & =a \cdot x_{i-1} \quad(\bmod p) \text { for } i=1,2, \ldots, 30 \\
x_{31} & =x_{0} \\
x_{32} & =x_{1} \\
x_{33} & =x_{2}
\end{aligned}
$$

GLIBC random ()

- The second step is based on the addition operation $\bmod q=2^{32}$
- In the second step, new x_{i} values are computed for $i=34,35, \ldots, 343$

$$
x_{i}=x_{i-3}+x_{i-31}(\bmod q) \text { for } i=34,35, \ldots, 343
$$

- In the final step, the output values are generated using the previous $\bmod q$ addition operation and the logical right shift operation $(\cdot)_{r s}$ as follows

$$
\begin{aligned}
x_{i} & =x_{i-3}+x_{i-31} \quad(\bmod q) \quad \text { for } i \geq 344 \\
r_{j} & =\left(x_{j+344}\right)_{r s} \quad \text { for } i \geq 0
\end{aligned}
$$

- Inversion: Two consecutive different moduli and the right shift make the inversion more difficult, however, since there are 2^{32} different seed values, exhaustive search is possible

