
1

Analysis of SIMD Applicability
to SHA Algorithms

O. Aciicmez

Abstract— It is possible to increase the speed and throughput of
an algorithm using parallelization techniques. Single-Instruction
Multiple-Data (SIMD) is a parallel computation model, which has
already employed by most of the current processor families. In
this paper we will analyze four SHA algorithms and determine
possible performance gains that can be achieved using SIMD
parallelism. We will point out the appropriate parts of each
algorithm, where SIMD instructions can be used.

I. I NTRODUCTION

Today the security of a cryptographic mechanism is not the
only concern of cryptographers. The heavy communication
traffic on contemporary very large network of interconnected
devices demands a great bandwidth for security protocols, and
hence increasing the importance of speed and throughput of a
cryptographic mechanism.

A straightforward approach to improve cryptographic per-
formance is to implement cryptographic algorithms in hard-
ware. Hardware implementation of an algorithm is much faster
than the software implementation, however this approach has
several drawbacks [1]. Two main disadvantages are variability
and cost. Usually a custom hardware is designed for just
one algorithm, on the other hand, communication systems
need several different algorithms to support all cryptographic
mechanisms. Also the cost of a custom hardware including
maintenance costs are much higher than those of software.

A far better solution is obtained either by designing a
general-purpose cryptographic hardware or by using fast soft-
ware implementations on general-purpose devices. The former
still has some drawbacks such as cost and flexibility. Many
approaches are available for designing general-purpose fast
cryptographic hardware [2] and fast cryptographic software
[3] [4].

In this paper, we focus on how single-instruction multiple-
data (SIMD) parallel computation model can improve software
cryptographic performance. The SIMD model speeds up the
software performance by allowing the same operation to be
carried out on multiple data elements in parallel.

Most of the current general-purpose computers employ
SIMD architectures. AltiVec extension to PowerPC [5], Intel’s
MMX technology[6], SSE and SSE2 extensions, Sun’s VIS
[7] and 3DNow! of AMD [8] are examples of currently used
SIMD technologies.

We will use Secure Hash Algorithm (SHA) [9][10] as the
cryptographic algorithm in this paper. We analyze the possi-
bility to improve current implementation of SHA algorithm
by using SIMD architecture and parallelization techniques.
We choose Intel Architecture [11][12][13] as the base SIMD
platform since it is the most widely used architecture among
the ones cited above.

The remainder of the paper is organized as follows: In
section 2 and 3, we introduce SIMD concept and the SIMD
architecture of Intel including MMX technology and SSE
extensions. Section 4 describes SHA algorithm and Section
5 discusses the possible improvements on SHA performance
that can be achieved by using SIMD instructions.

II. SIMD PARALLEL PROCESSING

Single-instruction multiple-data execution model allows
several data elements to be processed at the same time. The
conventional scalar execution model, which is called single-
instruction single-data (SISD) deals only with one pair of data
at a time. The programs using SIMD instructions can run much
faster than their scalar counterparts. However SIMD enabled
programs are harder to design and implement.

The most common use of SIMD instructions is to perform
parallel arithmetic or logical operations on multiple data
elements. In order to perform parallel SIMD operations, the
program must do:

1 . Load multiple data values into SIMD registers.
2 . Perform the SIMD operation on these registers.
3 . If required, load the results to memory.
4 . If more data has to be processed, repeat the steps.

SIMD instructions have the potential to speed-up the soft-
ware, however there are mainly 2 problems with SIMD model:

1 . If the data layout does not match the SIMD require-
ments, SIMD instructions may not be used or data
rearrangement code is necessary

2 . In case of unaligned data the performance will suffer
dramatically.

Fig. 1. SIMD Execution Model



2

III. INTEL’S SIMD ARCHITECTURE

Intel has introduced three extensions into IA-32 architecture
to allow IA-32 processors to perform SIMD operations since
the production of Pentium II and Pentium with Intel MMX
technology processor families. These extensions are MMX
technology, SSE extensions, and SSE2 extensions. They pro-
vide a group of SIMD instructions that operate on packed
integer and/or packed floating point data elements contained
in the 64-bit MMX or the 128-bit XMM registers.

Intel introduced MMX Technology in Pentium II and
Pentium with MMX Technology processor families. MMX
instructions use 64-bit MMX registers and perform SIMD
operations on packet byte, word, or doubleword integers
located in those registers.

The SSE SIMD integer instructions are the extension of
MMX technology. They were introduced in Pentium III pro-
cessors. These instructions use 128-bit XMM registers in
addition to MMX registers and they operate on packed single-
precision floating point values contained in the XMM registers
and on packed integers contained in the MMX registers.

The latest SIMD extensions of Intel, SSE2, were introduced
in the Pentium 4 and Intel Xeon processors. These instructions
use both MMX and XMM registers and perform operations on
packed double-precision floating-point values and on packed
integers. The SSE2 SIMD integer instructions extend IA-32
SIMD operations by adding new 128-bit SIMD integer oper-
ations and extending all the 64 bit-SIMD integer operations
introduced in the MMX technology and SSE to operate on
data contained in the 128-bit XMM registers

The MMX Technology, SSE extensions, and SSE2 exten-
sions provide a rich set of SIMD operations that operates on
both integer and floating-point data arrays and on streaming
integers and floating point data. These operations can greatly
increase the performance of applications running on the IA-32
processors.

In this paper, we are interested in SIMD operations that can
be performed on integers. As most of the other cryptographic
algorithms, SHA uses integer data and performs operations on
integers.

IV. SECUREHASH ALGORITHM (SHA)

SHA is an iterative one-way hash function that can process a
message to produce a message digest. There are four different
versions of SHA, namely SHA-1, SHA-256, SHA-384, and
SHA-512. These four algorithms mainly differ in the number
of bits of security that they provide. They further differ in
terms of the size of the blocks and words of data that are used
during hashing.

Table 1: Secure Hash Algorithm Properties. (values are
given in bits)

Algorithm SHA SHA SHA SHA
1 256 384 512

Message Size < 264 < 264 < 2128 < 2128

Block Size 512 512 1024 1024
Word Size 32 32 64 64

Message Digest Size 160 256 384 512
Security 80 128 192 256

A. Operations

The following operations are applied to w-bit words in all
four secure hash algorithms, where w is 32 for SHA-1 and
SHA256 and it is 64 for SHA-384 and SHA-512.

1 . Bitwise logical word operations: AND(∨), OR(∧),
XOR(⊕), and NOT(¬)

2 . Addition modulo2w.

Z = (X + Y )mod2w

3 . The right shift operationSHRn(x), where x is a w-bit
word and n is an integer with0 ≤ n < w, is defined by

SHRn(x) = x >> n

4 . The rotate right (circular right shift) operation
ROTRn(x) and the rotate left (circular left shift) op-
erationROTLn(x), where x is a w-bit word and n is an
integer with0 ≤ n < w, is defined by

ROTRn(x) = (x >> n) ∧ (x << w − n)

ROTLn(x) = (x << n) ∧ (x >> w − n)

Intel’s SIMD architecture provides appropriate instructions
for each operation described above. Thus SHA algorithm is
fully SIMD-compatible in terms of its operations, and can be
implemented in Intel’s SIMD architecture.

B. Algorithms

Each algorithm has two stages: preprocessing and hash com-
putation. Preprocessing involves padding a message, setting
initialization values to be used in the hash computation, and
parsing the padded message into m-bit blocks where m is 512
for SHA-1 and SHA-256 and 1024 for SHA-384 and SHA-
512. The hash computation generates a message schedule from
the padded message and uses that schedule, along with func-
tions, constants, and word operations to iteratively generate
a series of hash values. The message digest is the final hash
value generated by the hash computation.

For SHA-1 and SHA-256, each message block has 512 bits
that are represented as a sequence of sixteen 32-bit words.
These two hash computation algorithms perform operations
on 32-bit words.

For SHA-384 and SHA-512, each message block has 1024
bits, which are represented as a sequence of sixteen 64-bit
words. The operations are performed on 64-bit words in these
hash computation algorithms.



3

Each algorithm employs several rounds with different func-
tions to digest a message block and repeats these computations
for each block.

1) SHA-1: At first, the message M is parsed into 16-word
blocksM1, M2, ... , Mn.

The processing of eachMi involves 80 rounds. Before any
of the blocks is processed, theHj are initialized to some
constant values. To processMi, we proceed as follows:

1: Divide Mi into 16 wordsW0,W1, ...,W15

whereW0 is the left-most word
2: For t = 16 to 79

Wt = ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)
3: Let A = H0, B = H1, C = H2, D = H3, E = H4

4: For t = 0 to 79 do
TEMP = ROTL5(A) + ft(B,C,D) + E + Wt + Kt

E = D
D = C
C = ROTL30(B)
B = A
A = TEMP

5: H0 = H0 + A
H1 = H1 + B
H2 = H2 + C
H3 = H3 + D
H4 = H4 + E

The first two steps are message scheduling and the last two
ones are compression function steps. The message digest is
the 160-bit string represented by the 5 wordsH0H1H2H3H4

calculated after processing the last message block.
The functions used in SHA-1 are shown in Table.

Table 1: Functions used in SHA-1.

Round t Functionft(x, y, z)
0-19 Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
20-39 Parity(x, y, z) = x⊕ y ⊕ z
40-59 Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)
60-79 Parity(x, y, z) = x⊕ y ⊕ z

2) SHA-256: At first, the message M is parsed into 16-
word blocks M1,M2, ...,Mn. The processing of eachMi

involves 64 rounds. Before processing any blocks, theHj are
initialized to some constant values. To processMi, we proceed
as follows:

1: Divide Mi into 16 wordsW0,W1, ...,W15

whereW0 is the left-most word
2: For t = 16 to 63

Wt = σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16

3: Let A = H0, B = H1, C = H2, D = H3

E = H4, F = H5, G = H6,H = H7.
4: For t = 0 to 63 do

T1 = H +
∑

1(E) + Ch(E,F,G) + Wt + Kt

T2 =
∑

0(A) + Maj(A,B,C)
H = G
G = F
F = E
E = D + T1

D = C
C = B
B = A
A = T1 + T2

5: H0 = H0 + A
H1 = H1 + B
H2 = H2 + C
H3 = H3 + D
H4 = H4 + E
H5 = H5 + F
H6 = H6 + G
H7 = H7 + H

Similar to SHA-1, the first two steps are again message
scheduling and the last two steps are compression function
steps. The message digest is the 256-bit string represented by
the 8 wordsH0H1H2H3H4H5H6H7 calculated after that the
last message block is processed.

The functions used in SHA-256 are shown in Table.

Table 2:Functions used in SHA-256.

Function Definition
Ch(x, y, z) (x ∧ y)⊕ (¬x ∧ z)

Maj(x, y, z) (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)∑
0(x) ROTR2(x)⊕ROTR13(x)⊕ROTR22(x)∑
1(x) ROTR6(x)⊕ROTR11(x)⊕ROTR25(x)

σ0(x) ROTR7(x)⊕ROTR18(x)⊕ SHR3(x)
σ1(x) ROTR17(x)⊕ROTR19(x)⊕ SHR10(x)

3) SHA-512 and SHA-384:These algorithms are very sim-
ilar to SHA-256. They use 64-bit words and require 80 rounds
to process one message block.

At first, the message M is parsed into 16-word blocks
M1,M2, ...,Mn. The processing of eachMi involves 80
rounds. Before processing any blocks, theHj are initialized to
some constant values. To processMi, we proceed as follows:

1: Divide Mi into 16 wordsW0,W1, ...,W15

whereW0 is the left-most word
2: For t = 16 to 79

Wt = σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16

3: Let A = H0, B = H1, C = H2, D = H3

E = H4, F = H5, G = H6,H = H7.
4: For t = 0 to 79 do



4

T1 = H +
∑

1(E) + Ch(E,F,G) + Wt + Kt

T2 =
∑

0(A) + Maj(A,B,C)
H = G
G = F
F = E
E = D + T1

D = C
C = B
B = A
A = T1 + T2

5: H0 = H0 + A
H1 = H1 + B
H2 = H2 + C
H3 = H3 + D
H4 = H4 + E
H5 = H5 + F
H6 = H6 + G
H7 = H7 + H

The first two steps are the message scheduling steps and
the last two are compression function steps. The message
digest for SHA-512 is the 512-bit string represented by the
8 wordsH0H1H2H3H4H5H6H7 calculated after processing
the last message block. The message digest for SHA-384 is the
384-bit string represented by the 6 wordsH0H1H2H3H4H5

calculated after that the last message block is processed.
The functions used in SHA-384 and SHA-512 are shown in

Table.

Table 3: Functions used in SHA-384 and SHA-512.

Function Definition
Ch(x, y, z) (x ∧ y)⊕ (¬x ∧ z)

Maj(x, y, z) (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)∑
0(x) ROTR28(x)⊕ROTR34(x)⊕ROTR39(x)∑
1(x) ROTR14(x)⊕ROTR18(x)⊕ROTR41(x)

σ0(x) ROTR1(x)⊕ROTR8(x)⊕ SHR7(x)
σ1(x) ROTR19(x)⊕ROTR61(x)⊕ SHR6(x)

V. A PPLICABILITY OF SIMD OPERATIONS TOSHA

In this work, we are interested in two types of parallelism
that can be achieved using INTEL SIMD instructions: paral-
lelism within a thread and thread-level parallelism. We use
the word ”thread” to mean the ensemble of all the operations
to hash one file. Hashing more than one file simultaneously is
referred as thread-level parallelism. The purpose of parallelism
within a thread is to speed up hashing a file by performing
SIMD applicable operations on several data elements at the
same time.

In order to perform the same operation on different data
simultaneously, the values that the operation uses should be
known in advance. The level of parallelism depends on how

early the values to be used are known. The level of parallelism
is the number of operations that can be executed together.

In this section, we will analyze SIMD applicability of
each SHA algorithm and achievability of the two types of
parallelism.

A. Thread-level parallelism

It requires appropriate SIMD instructions for each operation
used in SHA algorithms to implement thread-level parallelism.
Fortunately, INTEL’s SIMD architecture contains all the re-
quired SIMD instructions to perform all operations of SHA
algorithms.

SHA-1 and SHA-256 perform operations on 32 bit words.
64 bit MMX registers can store two 32 bit words, so we
can hash any two files simultaneously using one of these two
algorithms. Moreover, we can also hash four files at the same
time if 128 bit XMM registers are used.

SHA-384 and SHA-512 perform operations on 64 bit words.
If MMX registers are used, no parallelism can be achieved
since an MMX register can only hold one 64 bit word.
However we can obtain a high performance gain by using
MMX registers instead of 32 bit general purpose registers.
We can hash two files in parallel by using XMM registers.

In both cases more files can be hashed using XMM registers,
which is expected due to the size of the registers.

B. Parallelism within a thread

To speed up hashing on a file, we have to combine same
operations of different rounds and use SIMD instructions to
perform these operations at a time. In order to combine the
same operation of two consecutive rounds, we must know
the values that will be used in the next round while we
are processing the round before. If we know these values in
advance, we can successfully convert these operations into one
SIMD instruction.

We had to analyze each operation of SHA algorithms
to determine whether this operation is SIMD applicable or
not. The rest of this section introduces the results of our
analysis. The following subsections give the SIMD applicable
operations of each SHA algorithm.

1) SHA-1: There are five main parts of the algorithm that
SIMD instructions can be used. Most important of them is
message scheduling.

Wt = ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)

To be able to computeWt, we first have to computeWt−3.
That is the reason whyWt’s of only three consecutive rounds
can be computed simultaneously. However the computation of

Wt−8 ⊕Wt−14 ⊕Wt−16

can be executed 8 at a time. On the other hand, the
maximum number of parallel operations that can be executed
is 4 due to the restrictions of INTEL architecture. If MMX



5

registers or XMM registers are used, we can perform two 32-
bit operations or four 32-bit operations, respectively. So the
maximum level of parallelism that can be reached is 4.

Another part of the algorithm we can apply SIMD instruc-
tions is the summation:E + Wt + Kt.

After completing message scheduling, we can perform the
addition Wt + Kt of all rounds at the same time. But again
we are restricted by 4 operations at a time. The first addition
requires the value of E, which is determined byROTL30(B)
operation executed three rounds before. Therefore, three sum-
mations can be performed together simultaneously.

Other SIMD applicable operations are the computations of
ft(B,C,D) andROTL30(B). The values of B and D of one
round are the same as the values of A and C of the previous
round, respectively. The value of C used to calculateft() is
the result ofROTL30(B) operation of the previous round.
This gives us the opportunity to use SIMD instructions for
calculations offt(B,C,D) and ROTL30(B). If we want to
compute twoft(B,C,D) operations in parallel, we first need
to compute twoROTL30(B) operations in parallel. If SIMD
instructions are not used to calculateROTL30(B), we can still
fasten the computation offt(B,C,D) by using SIMD for the
parts that only B and D are involved. In this case, it is more
efficient to use the below Boolean equation as Maj(x,y,z):

Maj(X, Y, Z) = [Y ∨ (X ⊕ Z)] ∧ (X ∨ Z)]

Table 4: SIMD applicable operations of SHA-1 and levels of
parallelism of these operations

Operation LoP
Wt−8 ⊕Wt−14 ⊕Wt−16 4

ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) 3
Wt + Kt 4

E + Wt + Kt 3
ft(B,C,D) 2
ROTL30(B) 2

2) SHA-256: Because SHA-256 uses 32-bit words, we
can perform 2 operations in one SIMD instruction if MMX
registers are used, or we can perform 4 operations if we use
XMM registers.

The most important part of SHA-256 that SIMD instructions
can be succesfully mounted is message scheduling.

Wt = σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16

To be able to computeWt, we first have to computeWt−2.
Because of it, we can just computeWt of two consecutive
rounds simultaneously. But the computation of

Wt−7 + σ0(Wt−15) + Wt−16

can be fasten 4 times using XMM registers.
SIMD instructions can also be used in the summation

H + Wt + Kt. After completing message scheduling, we

can perform the additionWt + Kt of all rounds at the same
time. But we are restricted by 4 operations at a time. The
first addition requires the value of H, which is determined by
D+T1 operation executed four rounds before. Therefore, four
summations can be performed together simultaneously.

Table 5: SIMD applicable operations of SHA-256 and levels
of parallelism of these operations.

Operation LoP
Wt−7 + σ0(Wt−15) + Wt−16 4

σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16 2
Wt + Kt 4

H + Wt + Kt 4

3) SHA-382 and SHA-512:These algorithms use 64-bit
words, so maximum level of parallelism that can be achieved
is two when XMM registers are used. Because the structures of
these algorithms and SHA-256 are same, the SIMD applicable
parts of these three algorithms are also same. The only
difference is the maximum level of parallelism that can be
achieved, which is only 2 for SHA-384 and SHA-512.

Table 6: SIMD applicable operations of SHA-382 and
SHA-512 and levels of parallelism of these operations.

Operation LoP
Wt−7 + σ0(Wt−15) + Wt−16 2

σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16 2
Wt + Kt 2

H + Wt + Kt 2

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the SIMD technology of INTEL
IA-32 processor family and analyzed the possible application
of this technology to four different SHA algorithms. We
showed that each SHA algorithm has a great potential to boost
both its speed and throughput using SIMD technology. As the
future work, the modifications pointed out in this paper can
be implemented and the performance gains obtained by each
modification can be analyzed.

REFERENCES

[1] Internet Society Symposium on Network and Distributed System Secu-
rity, Parallelized Network Security Protocols, 1996.

[2] Rainer Buchty, Cryptonite - A Programmable Crypto Processor Ar-
chitecture For High-Bandwidth Applications, Ph.D. thesis, Technische
Universitt Mnchen, December 2002.



6

[3] Third IEEE Workshop on the Architecture and Implementation of High
Performance Communications Subsystems,Towards High Performance
Cryptographic Software, 1995.

[4] Antoon Bosselaers, René Govaerts, and Joos Vandewalle, “Fast hashing
on the Pentium,” Lecture Notes in Computer Science, vol. 1109, pp.
298–??, 1996.

[5] “Altivec,” http://e-www.motorola.com/webapp/sps/site/.
[6] David Bistry, Carole Delong, Dr. Mickey Gutman, et al.,The Complete

Guide to MMX Technology, McGraw - Hill Inc., 1997.
[7] “Vis,” http://www.sun.com/processors/vis/.
[8] “3dnow!,” http://www.amd.com/us-en/Processors/TechnicalResources/.
[9] National Institute of Standards and Technology,Specifications for the

SECURE HASH STANDARD, April 1995.
[10] National Institute of Standards and Technology,Specifications for the

SECURE HASH STANDARD, August 2002.
[11] Intel Corporation,IA-32 Intel Architecture Software Developer’s Manual

Volume 1, 2003.
[12] Intel Corporation,IA-32 Intel Architecture Software Developer’s Manual

Volume 2, 2003.
[13] Intel Corporation,IA-32 Intel Architecture Optimization, 2003.
[14] Don Anderson and Tom Shanley,Pentium Processor System Architec-

ture, Addison Wesley Publishing Company, 1995.
[15] Hans-Peter Messmer,The Indispensable Pentium Book, Addison Wesley

Publishing Company, 1995.
[16] Kevin R. Wadleigh and Isom L. Crawford,Software Optimization for

High Performance Computing, Prentice Hall PTR, 2000.
[17] Rick Booth, Inner Loops, A Sourcebook for Fast 32-bit Software

Development, Addison Wesley Publishing Company, 1997.
[18] Intel Corporation,IA-32 Intel Architecture Software Developer’s Manual

Volume 3, 2003.
[19] Intel Corporation, Desktop Performance and Optimization for Intel

Pentium 4 Processor, Feb. 2001.
[20] Intel Corporation,Intel Architecture Optimization, Feb. 1999.
[21] B. Dixon and A. K. Lenstra, “Factoring integers using simd sieves,”

Lecture Notes in Computer Science, vol. 765, pp. 28–39, 1994.
[22] Antoon Bosselaers, René Govaerts, and Joos Vandewalle, “SHA: A

design for parallel architectures?,”Lecture Notes in Computer Science,
vol. 1233, pp. 348–??, 1997.

[23] Eric C. Seidel, “Tomorrows cryptography: Parallel computation via mul-
tiple processors, vector processing, and multi-cored chips,” December
2002.

[24] Raghav Bhaskar, Pradeep K. Dubey, Vijay Kumar, Atri Rudra, and Ani-
mesh Sharma, “Efficient galois field arithmetic on simd architectures,”
.

[25] Atri Rudra, Vijay Kumar, Pradeep K. Dubey, Raghav Bhaskar, and
Animesh Sharma, “Data-sliced implementation of reed-solomon and
rijndael on simd processors,” .

[26] Atri Rudra, Pdadeep K. Dubey, Charanjit S. Jutla, Vijay Kumar,
Josyula R. Rao, and Pankaj Rohatgi, “Efficient implementation of
rijndael encryption with composite field arithmetic,” .


