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Abstract— It is possible to increase the speed and throughputof ~ The remainder of the paper is organized as follows: In
an algorithm using parallelization techniques. Single-Instruction section 2 and 3, we introduce SIMD concept and the SIMD
Multiple-Data (SIMD) is a parallel computation model, which has architecture of Intel including MMX technology and SSE
already employed by most of the current processor families. In . . . . -
this paper we will analyze four SHA algorithms and determine exte_znsmns. Section 4 descrlbes SHA algorithm and Section
possible performance gains that can be achieved using SIMD S discusses the possible improvements on SHA performance

parallelism. We will point out the appropriate parts of each that can be achieved by using SIMD instructions.
algorithm, where SIMD instructions can be used.

1. SIMD PARALLEL PROCESSING

|. INTRODUCTION Single-instruction multiple-data execution model allows

Today the security of a cryptographic mechanism is not tiseveral data elements to be processed at the same time. The
only concern of cryptographers. The heavy communicatimonventional scalar execution model, which is called single-
traffic on contemporary very large network of interconnectddstruction single-data (SISD) deals only with one pair of data
devices demands a great bandwidth for security protocols, atd time. The programs using SIMD instructions can run much
hence increasing the importance of speed and throughput daster than their scalar counterparts. However SIMD enabled
cryptographic mechanism. programs are harder to design and implement.

A straightforward approach to improve cryptographic per- The most common use of SIMD instructions is to perform
formance is to implement cryptographic algorithms in hargrarallel arithmetic or logical operations on multiple data
ware. Hardware implementation of an algorithm is much fastetements. In order to perform parallel SIMD operations, the
than the software implementation, however this approach haegram must do:
several drawbacks [1]. Two main disadvantages are variability
and cost. Usually a custom hardware is designed for just
one algorithm, on the other hand, communication systemst - Load multiple data values into SIMD registers.
need several different algorithms to support all cryptographic2 - Perform the SIMD operation on these registers.
mechanisms. Also the cost of a custom hardware including3 - If required, load the results to memory.
maintenance costs are much higher than those of software. 4 - If more data has to be processed, repeat the steps.

A far better solution is obtained either by designing a
general-purpose cryptographic hardware or by using fast soft- . . .
ware implementations on general-purpose devices. The forme?lMD instructions have the potential to spged-up the SOft_'
still has some drawbacks such as cost and flexibility. MaHVyare’ however there are mainly 2 problems with SIMD model:

approaches are available for designing general-purpose fast
cryptographic hardware [2] and fast cryptographic software; |t the data layout does not match the SIMD require-

[3] [4]. _ _ _ _ ments, SIMD instructions may not be used or data
In this paper, we focus on how single-instruction multiple- rearrangement code is necessary

data (SIMD) parallel computation model can improve software, | case of unaligned data the performance will suffer
cryptographic performance. The SIMD model speeds up the dramatically.

software performance by allowing the same operation to be
carried out on multiple data elements in parallel.

Most of the current general-purpose computers employ
SIMD architectures. AltiVec extension to PowerPC [5], Intel's ...
MMX technology[6], SSE and SSE2 extensions, Sun’s VIS
[7] and 3DNow! of AMD [8] are examples of currently used
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SIMD technologies. : i;l : ” i i;l ”
We will use Secure Hash Algorithm (SHA) [9][10] as the (op (o) (o) o)
cryptographic algorithm in this paper. We analyze the possi- | Y : 1
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bility to improve current implementation of SHA algorithm
by using SIMD architecture and parallelization techniques.
We choose Intel Architecture [11][12][13] as the base SIMBig. 1. SIMD Execution Model
platform since it is the most widely used architecture among

the ones cited above.



) Algorithm SHA SHA SHA SHA

II1. INTEL'S SIMD ARCHITECTURE 9 1 256 334 519

Message Size | <257 | <257 | < 2™ | <28

Intel has introduced three extensions into |1A-32 architecture| Block Size 512 | 512 | 1024 | 1024
to allow IA-32 processors to perform SIMD operations since Word Size = | 32 32 64 64
the production of Pentium Il and Pentium with Intel MMX Message Digest Size 160 256 384 p12
Security 80 128 192 256

technology processor families. These extensions are MMX
technology, SSE extensions, and SSE2 extensions. They pro-
vide a group of SIMD instructions that operate on packed
integer and/or packed floating point data elements contain&d
in the 64-bit MMX or the 128-bit XMM registers. '
Intel introduced MMX Technology in Pentium Il and The following operations are applied to w-bit words in all

Pentium with MMX Technology processor families. Mmx four secure h_as_,h algorithms, where w is 32 for SHA-1 and
instructions use 64-bit MMX registers and perform simMpPHAZ256 and it is 64 for SHA-384 and SHA-512.

operations on packet byte, word, or doubleword integers

located in those requsters. ) _ ) 1 . Bitwise logical word operations: ANLQV), OR(A),
The SSE SIMD integer instructions are the extension of  xOR(a), and NOT-)

MMX technology. They were introduced in Pentium Ill pro- 5  addition modulo2®.

cessors. These instructions use 128-bit XMM registers in

addition to MMX registers and they operate on packed single- Z = (X +Y)mod2"
precision floating point values contained in the XMM registers 5 110 right shift operatio H R,, ()
and on packed integers contained in the MMX registers.

The latest SIMD extensions of Intel, SSE2, were introduced
in the Pentium 4 and Intel Xeon processors. These instructions SHRp(z) =z >>n
use both MMX and XMM registers and perform operationson 4 . The rotate right (circular right shift) operation
packed double-precision floating-point values and on packed ROTR,(z) and the rotate left (circular left shift) op-
integers. The SSE2 SIMD integer instructions extend |A-32 eration ROT L, (z), where X is a w-bit word and n is an
SIMD operations by adding new 128-bit SIMD integer oper-  jnteger with0 < n < w, is defined by
ations and extending all the 64 bit-SIMD integer operations
introduced in the MMX technology and SSE to operate on ROTR,(z) = (z >>n) A (z <<w—n)
data contained in the 128-bit XMM registers ROTL,(z) = (x << n) A (z >> w — n)

The MMX Technology, SSE extensions, and SSE2 exten-
sions provide a rich set of SIMD operations that operates on

,bOth integer and _“'Oating'pf’i”t data arrays an_d on Stre""minglntel’s SIMD architecture provides appropriate instructions
integers and floating point data. These operations can greqfly each operation described above. Thus SHA algorithm is

increase the performance of applications running on the 'A':ﬁglly SIMD-compatible in terms of its operations, and can be

Processors. implemented in Intel's SIMD architecture.
In this paper, we are interested in SIMD operations that can

be performed on integers. As most of the other cryptograpkéc

i . . Algorithms
algorithms, SHA uses integer data and performs operations on ) )
integers. Each algorithm has two stages: preprocessing and hash com-

putation. Preprocessing involves padding a message, setting
initialization values to be used in the hash computation, and
parsing the padded message into m-bit blocks where m is 512
IV. SECUREHASH ALGORITHM (SHA) for SHA-1 and SHA-256 and 1024 for SHA-384 and SHA-
512. The hash computation generates a message schedule from
ihe padded message and uses that schedule, along with func-

Operations

, Where x is a w-bit
word and n is an integer with < n < w, is defined by

SHA is an iterative one-way hash function that can proces

message to produce a message digest. There are four diffe

versions of SHA, namely SHA-1, SHA-256, SHA-384 and Series of hash values. The message digest is the final hash
' ' X ' ¥a|ue generated by the hash computation.

SHA-512. These four algorithms mainly differ in the numbe .
of bits of security that they provide. They further differ int Ftor SHA-1 and tSZ'A'ZSG' each messe;ge_ ?IOCk ggsbilz blés
terms of the size of the blocks and words of data that are usﬁ? are represented as a sequence ot SiXieen so-bit Words.
. . ese two hash computation algorithms perform operations
during hashing. :
on 32-bit words.
For SHA-384 and SHA-512, each message block has 1024
bits, which are represented as a sequence of sixteen 64-bit
Table 1: Secure Hash Algorithm Properties. (values are words. The operations are performed on 64-bit words in these
given in bits) hash computation algorithms.

a i . .
ions: constants, and word operations to iteratively generate



Each algorithm employs several rounds with different func- E=H, F=H;,G=Hg, H=Hr.
tions to digest a message block and repeats these computatidns For t = 0 to 63 do

for each block.

T'=H+)> ,(E)+ChE,F,G)+ W+ K,

1) SHA-1: At first, the message M is parsed into 16-word Ty =3 y(A)+ Maj(A, B,C)

bIOCkSMl, Ms, ... , M,.

The processing of each/; involves 80 rounds. Before any
of the blocks is processed, thE; are initialized to some

constant values. To proceds;, we proceed as follows:

1 Divide M; into 16 wordsW,, W1, ..., Wis
whereW is the left-most word
2: Fort=161to 79
Wy = ROTLi(Wi;—3 ® Wi_g ® Wi_14 © Wy_15)
3: LetA:HU,B:Hl,C:H27D:H3,E:H4
4; Fort=0to 79 do

TEMP = ROTLs(A) + f((B,C,D)+ E+ W, + K, Hy=H,+E

E=D
D=C
B=A
A=TEMP
5: H0:H0+A
H,=H,+B
Hy=Hy+C
Hs=Hs;+ D
Hy=H,+E

H=G
G=F
F=F
E=D+1T
D=C
C=8B
B=A
A=T1+T15
5. Hy=Hy+A
H,=H,+B
Hy=Hs+C
Hs=Hs;+ D
Hs;=Hs+ F
Hs=Hsg+G
H;,=H;,+H

Similar to SHA-1, the first two steps are again message
scheduling and the last two steps are compression function
steps. The message digest is the 256-bit string represented by
the 8 wordsHy H, Hy Hs H4Hs Hg H; calculated after that the
last message block is processed.

The functions used in SHA-256 are shown in Table.

The first two steps are message scheduling and the last two

ones are compression function steps. The message digest is Table 2:Functions used in SHA-256.
the 160-bit string represented by the 5 wordgH, Ho H3 H, i _
calculated after processing the last message block. Function Definition
The functions used in SHA-1 are shown in Table. Ch(z,y,z) (zAy)® (-x A z)
Maj(z,y, 2) (Ay)®(znz)®(yAz)
S (@) ROTR,(z) & ROTRy3(z) & ROT Ras()
Table 1: Functions used in SHA-1. > () ROTRg(z) ® ROTRy1(x) @ ROT Ras(x)
oo (.T) ROTR7($) (&) ROTng(I) ® SHR;3 (.13)
Round t Function fi(x,y, 2) o1(x) ROTR;7(x) ® ROTR19(x) & SHR10(x)
0-19 Ch(z,y,z) = (x ANy) ® (—x A 2)
20-39 Parity(z,y,2) =z ®y D 2
40-59 | Maj(z,y,2) = (xAy)® (xAN2) D (yAz) 3) SHA-512 and SHA-384These algorithms are very sim-
60-79 Parity(z,y,2) = dy P 2 ilar to SHA-256. They use 64-bit words and require 80 rounds

to process one message block.
At first, the message M is parsed into 16-word blocks

2) SHA-256: At first, the message M is parsed into 16y, Ms, ..., M,. The processing of eachd/; involves 80

word blocks M;, Ms, ..., M,,. The processing of eacld/;

rounds. Before processing any blocks, fiigare initialized to

involves 64 rounds. Before processing any blocks,fifjeare some constant values. To process, we proceed as follows:

initialized to some constant values. To procéss we proceed

as follows:

1 Divide M; into 16 wordsW,, W1, ..., Wis
whereW is the left-most word
2: Fort =16 to 63
Wy = o1(Wi—2) + Wi—z + 0o(Wi—15) + Wi_16
3: Let A= Hy,B=H;,C=Hy,D=H;

1: Divide M; into 16 wordsWy, W1, ..., Wis
where W, is the left-most word
2: Fort=16to 79
Wi =01(Wi—2) + Wiz + 00(Wi—15) + Wi_16
3: LetA:Ho,B:HhC:HQ,D:Hg
E=H, F=H;,G=Hg, H=Hr.
4; Fort=0to 79 do



Tyv=H+) (E)+ChE,F,G)+W; + K early the values to be used are known. The level of parallelism

Ty =) 4(A) + Maj(A, B,C) is the number of operations that can be executed together.

H=G In this section, we will analyze SIMD applicability of

G=F each SHA algorithm and achievability of the two types of

F=F parallelism.

E=D+T

g;g A. Thread-level parallelism

B=A It requires appropriate SIMD instructions for each operation

A=T,+Ts used in SHA algorithms to implement thread-level parallelism.

5. Hy=Hy+A Fortunately, INTEL's SIMD architecture contains all the re-

H,=H,+B quired SIMD instructions to perform all operations of SHA
Hy=Hy +C algorithms.
Hs=Hs+D SHA-1 and SHA-256 perform operations on 32 bit words.
H,=H,+E 64 bit MMX registers can store two 32 bit words, so we
Hs=H;+ F can hash any two files simultaneously using one of these two
Hs = Hg + G algorithms. Moreover, we can also hash four files at the same
H,=H;+H time if 128 bit XMM registers are used.

SHA-384 and SHA-512 perform operations on 64 bit words.
If MMX registers are used, no parallelism can be achieved
since an MMX register can only hold one 64 bit word.

The first two steps are the message scheduling steps &lfyvéver we can obtain a high performance gain by using
the last two are compression function steps. The messdg¥X registers instead of 32 bit general purpose registers.
digest for SHA-512 is the 512-bit string represented by th&€ can hash two files in parallel by using XMM registers.

8 words HoHy Ho Hy Hy Hs Hg Hy calculated after processing N bqth cases more files can pe hashed using XMM registers,
the last message block. The message digest for SHA-384 is f{fich is expected due to the size of the registers.
384-bit string represented by the 6 worHg Hy Ho Hs Hy H3,
calculated after that the last message block is processed. g parallelism within a thread
The functions used in SHA-384 and SHA-512 are shown in

Table To speed up hashing on a file, we have to combine same

operations of different rounds and use SIMD instructions to
perform these operations at a time. In order to combine the
same operation of two consecutive rounds, we must know

Table 3: Functions used in SHA-384 and SHA-512. e yajyes that will be used in the next round while we

Function Definition are processing the round before. If we know these values in
Chiz,y,2) @Ay @ (A 2) advance, we can successfully convert these operations into one
Maj(z,y, z) @AY B (zA2)B(yA2) SIMD instruction.

So(@) ROT Rys(x) & ROT Ryy(z) @ ROT Ryg() We had to analyze each operation of SHA algorithms

S (2) ROTRy4(z) ® ROTR5(z) & ROT Ry, (z) | 10 determine whether this operation is SIMD applicable or

Uol(x ROTR, (z) ® ROTRg(z) & SHR;(x not. The rest of this section introduces the results of our
1

Jl(x; ROT Ryg(z) ® ROT Ry (z) & SH R (z) analys_is. The following subsegtions give the SIMD applicable
operations of each SHA algorithm.

1) SHA-1: There are five main parts of the algorithm that
SIMD instructions can be used. Most important of them is
message scheduling.

In this work, we are interested in two types of parallelism
that can be achieved using INTEL SIMD instructions: paral-
lelism within a thread an(;;l thread-level parallelism. W[()a use Wt=ROTLi(Wis & Wis & Wi—1a & Wi15)
the word "thread” to mean the ensemble of all the operationstg pe able to comput#’;, we first have to computé/;_s.

to hash one file. HaShing more than one file Simu|taneOUS|y1iﬁat is the reason WhWt,S of Only three consecutive rounds

within a thread is to speed up hashing a file by performing

SIMD gppllcable operations on several data elements at the Wy s @® Wi 146 W16
same time.

In order to perform the same operation on different datacan be executed 8 at a time. On the other hand, the
simultaneously, the values that the operation uses shouldraximum number of parallel operations that can be executed
known in advance. The level of parallelism depends on hass 4 due to the restrictions of INTEL architecture. If MMX

V. APPLICABILITY OF SIMD OPERATIONS TOSHA



registers or XMM registers are used, we can perform two 32an perform the additio®V; + K, of all rounds at the same

bit operations or four 32-bit operations, respectively. So thiene. But we are restricted by 4 operations at a time. The

maximum level of parallelism that can be reached is 4. first addition requires the value of H, which is determined by
Another part of the algorithm we can apply SIMD instrucD + T} operation executed four rounds before. Therefore, four

tions is the summation& + W; + K;. summations can be performed together simultaneously.
After completing message scheduling, we can perform the

addition W, + K, of all rounds at the same time. But again

we are restricted by 4 Operations at a time. The first addlthlab|e 5: SIMD app"cab|e Operations of SHA-256 and levels

requires the value of E, which is determined BQT L3,(B) of parallelism of these operations.

operation executed three rounds before. Therefore, three sum-

mations can be performed together simultaneously. Operation LoP
Other SIMD applicable operations are the computations of Wiz +00(Wi15) + Wi_1s 4

fi(B,C, D) and ROT L3z (B). The values of B and D of one o1(Wi—2) + Wiz + oo(Wi—15) + Wi_16 2

round are the same as the values of A and C of the previous Wi + K, 4

round, respectively. The value of C used to calculitg is H+ W+ K; 4

the result of ROT L3o(B) operation of the previous round.

This gives us the opportunity to use SIMD instructions for

calculations off;(B, C, D) and ROT L3y(B). If we want to 3) SHA-382 and SHA-512These algorithms use 64-bit
compute twof; (B, C, D) operations in parallel, we first needwords, so maximum level of parallelism that can be achieved
to compute twoROT L3y (B) operations in parallel. If SIMD is two when XMM registers are used. Because the structures of
instructions are not used to calculd®&T L3, (B), we can still these algorithms and SHA-256 are same, the SIMD applicable
fasten the computation of.(B, C, D) by using SIMD for the parts of these three algorithms are also same. The only
parts that only B and D are involved. In this case, it is momifference is the maximum level of parallelism that can be
efficient to use the below Boolean equation as Maj(x,y,z): achieved, which is only 2 for SHA-384 and SHA-512.

Maj(X,Y,Z)=Y V(XD Z)|AN(XVZ)]
Table 6: SIMD applicable operations of SHA-382 and
SHA-512 and levels of parallelism of these operations.

Table 4: SIMD applicqble operations of S.HA-l and levels of Operation ToP

parallelism of these operations W T ooWoss) Wit 5

Operation LoP o1(Wi—2) + Wiz + 0o(Wi—15) + Wi—16 | 2

Wi_g @ Wi_14 © Wi_1s 4 . Iftl; I_Et}( g

ROTL(Wy_3 ® Wi_g & Wi_14 & Wi_16) 3 t t
W, + K, 4
E + Wt + Kt 3
ft(B7 C, D) 2
ROT L3(B) 9 VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the SIMD technology of INTEL
IA-32 processor family and analyzed the possible application

2) SHA-256: Because SHA-256 uses 32-bit words, wef this technology to four different SHA algorithms. We
can perform 2 operations in one SIMD instruction if MMXshowed that each SHA algorithm has a great potential to boost
registers are used, or we can perform 4 operations if we uUseth its speed and throughput using SIMD technology. As the

XMM registers. future work, the modifications pointed out in this paper can
The most important part of SHA-256 that SIMD instructione implemented and the performance gains obtained by each
can be succesfully mounted is message scheduling. modification can be analyzed.

Wy = o01(Wi—2) + Wiz + 0o(Wi—15) + Wi_16

To be able to comput&/;, we first have to computd/; _.
Because of it, we can just compul&; of two consecutive
rounds simultaneously. But the computation of
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