Analysis of Low-Power Elliptic Curve
Cryptography Using Scaled Modular Arithmetic

Ahmed Al Faresi
Electrical and Computer Engineering
Oregon State University
Corvallis, Oregon 97331-4501
Email: alfaresi@engr.orst.edu

Abstract— We present a custom class of primes using modular efficient, low power scalable hardware implementation.
scaling that facilitate efficient finite filed operations. In addition

we introduce an inversion algorithm that utilizes such speial [I. MATHEMATICAL BACKGROUND
modulus. This inversion algorithm is an improvement on the
available Euclidean algorithm, incorporating the use of the scaled Finite filed defined over the3F = 2%. Arithmetic is

modulus and proving to be of high performance and efficiency f,nqamental to the implementation of a number of modern
for hardware implementation. Using both the scaled modulus

and the inversion algorithm we define a cryptographic procesor cryptographic sys_tems f"md schgmes of certain cryptogr_aphi
for Elliptic curves Cryptography (ECC). This processor offers a Systems. Most arithmetic operations, such as exponeottiati

superior performance in terms of area, power and speed. inversion, and division operations, can be carried outgisin
just a modular multiplier [6]. Simple modular multiplicati
. INTRODUCTION is implemented by first computing the product of the two

L . . operands,c = a.b, the result is then reduced using the
The applications of Modular arithmetic in cryptography arg dulus» — ¢ (mod p). Since reduction would mean a
endless. Many cryptographic schemes like the RSA algorithim - P)-

[1], Diffe-helman key exchange algorithm [2], the DigitaId'V's'on operation, and that is .to be avoided, certain maidul
. _— ave been proposed to alleviate such a problem. Of such
signature schemes [3] and elliptic curve cryptography [4 odulai is a Mersenne Prime given in the forfic with
utilize modular arithmetic. The implementation of Cel’ta(ijlil : : .
) . : : ogac < [k/2], wherek is an integer for whichd < |k| <
schemes requires the arithmetic operations modulo theuptod,, ;7" o) . :
of two large primes i.e. n= Others schemes like Diffe2—m If c =1, thenp is a Mersenne Prime and must
9e p €. N=pq.) i : necessarily be a prime. If n is positive integer less tpan
Helman and El-Gamal are based on arithmetic of INtegers. " an be writtem — w92k — g.2F + b Whereu — 0
modulo a large prime p. In Elliptic Curve Digital Signature o ' N
. ; . . or 1 anda andb are nonnegative integers less thh then
Algorithm (ECDSA) the arithmetic operations are modular ~™ ™ , . : _—
operations with respect to a large prime moduld (p) n=u.c’+ac+b (mod p). Repeating this substitution a few
P P ge p P times will yield n modulo p. This method requires a small

or polynomial arithmetic modulo a high degree irreducible o .
polynomial defined over th&F(2¢). The key for efficient Aumber of additions and subtractions rather than the usual

implementation of ECDSA ovefF — 2" is to choose irre- division step. Unfortunately Mersenne primes and primes of

i .
ducible polynomials that allow for efficient modular redoat the from2" + 1 are scarce. For degrees up to 1000 no primes

.) . of the form2* + 1 and only two Mersenne prime®?! — 1
By doing so we reduce the complexity, power consumption_. o7 . .

: : nd2°°" — 1 exist.[8]. However for ECDSA such primes are
and low speed of the implementation process. To date, the

best irreducible polynomial obtained is either a trinomial large and are unsuitable. Therefore an alternativeieolu

. v
or an equally-space polynomial (ESP). Unfortunately, gher to use primes of the forrd" — 3.

exist only a few irreducible ESPs in the range of interst
of most applications, e.g., error-correcting code, cormput
algebra, and elliptic curve cryptography [5]. Thereforssle Modular scaling plays a vital role in cryptographic
efficient trinomials or pentanomials are used instead. Hewe implementations since it allows for a key bit increase ifdee
such less efficient polynomials result in extra additons arm without having to change or reconfigure the cryptographic
alignment adjustment rendering the implementation to lmr.podesign the earliest works on modular scalability where
A solution to such a problem is to use low hamming weighhtroduced by Walter. The basic idea is to obtain a modulus
polynomials with a special modulus. To achieve such desiredalable in the higher order bits. This is achieved by sgalin
modulai equivalent to the low hamming weight we introduca prime modulus to obtain a new ome = ps wherep is

a modulai of Mersenne form using modulus scaling. This itme original modulus scaled ta. Now for a given integen

turn allowed for the development of an inversion algorithmeduced by the new modulus will give a result congruent
that utilized the modulai to push the margin and create vety a:

efficient inversion hardware resulting in a very fast, area-

IIl. M ODULUS SCALING

(a (mod m)) (mod p) = a (mod p) When a Algorithm A-modified for divison with scaled modulus
scaled modulus is used, residues will be in theput: a € [1,p— 1],p,andywhere is prime andp = 27 — 1
rangém —1,0] = [s.p—1,0]. The number is not fully reduced Output: b € [1,p — 1] whereb = a~! (mod p)
and essentially we are using a redundant representatiorewhe
an integer is represented usin@og.s] more bits than g ;
necessary. Therefore it will be ne<[:essa]rily that the finslilte Finde suech th?"g | .
be reduced by p to obtain a fully reduced representation. Now %= u/2 iélSh'ﬂ of trailing zeros .
in order to scale a modulus and obtain one of Iow—hammin%: b:= F(2¢7°b) (mod m); ficircular left shift
wait we need to find a small suitable constant to scale thy I «= lreturnb;
prime p. Its worth noting that if a random pattern appears irn°: (b, ¢, u,v) = (b+e,byutv,u);

a modulus than a low hamming weight optimization will not : go to step 2

be possible. Two heuristics are presented that form a basis

for efficient on the fly scaling[8]: The above algorithm has been modified . This simple
modification saves one multiplication in elliptic curve

Heuristic 1 if the base B representation of an integeroperations. The Algorithm A modified is shown below:
contains a series of repeating digits, scaling the integér w
the largest possible digits, produces a string of repeaténrg Algorithm A-modified for divison with scaled modulus
digits in the scaled and recoded integer. Input: a € [1,m—1] ,d € [1,m—1],m,andjwheren = 29+1

Output: b € [1,m — 1] whereb = d/a (mod m)

Assume that baseé3 representation contains a repeating
value D. Then we use the scaling factor= B—1 to compute 1: a:=a.-s (mod m)

m. When a string of repeating-digits is multiplied with the 2: (b, ¢, u,v) == (d,0,a,m);

(b, c,u,v) == (1,0,a,p);

scaling factor, and written in basé we get: 3: Finde such thal® | u
(DDDD...DDD)g.(B — 1) = (DDDD..DDD0)g — 4 w:=u/2¢ //shift of trailing zeros
(DDDD...DDD)g = (D000...000D) . 5. b:=7F(277°b) (mod m); /fcircular left shift
6: if u = sreturnb;

The bar over the least significant digit denotes a negativ%i (b, c,u,v) := (b+ ¢, b,u+v,u);
valued digit. 8. gotostep3

Heuristic 2 Given a modulus containing repeating-
digits in baseB representation, ifB-1 is divisible by the
repeating digit, then the modulus can be efficiently scaled
the factorZ51.

Inversion algorithms efficiency is measured by the number
of iterations k. To show that Algorithm A is efficient in
Berms of iteration number, we compared its distribution for
k against that of a Montgomery inversion algorithm. We com-

_ . ! o) uted the inverse of 1000 randomly chosen integers modulo
As earlier the heuristic is verfied by multiplying a string oEn — 2167 4 1 using Algorithm A. Sincep = m/3 is

repeating digits with the scaling factor and then be reapding 1g6.pit prime we repeated the same experiment with the

[savas]. B Montgomery inversion algorithm using and we depicted
(DDDD""DDZ_))B'% =((B=1DB-1)(B-1)..(B= the two distributions in Figure 1. Besides having much easie
1) = (1000...01) 5. operations in each iteration one can easily observe thageer
number of iterations of Algorithm A is slightly lower thangh
IV. | NVERSIONALGORITHM number of iterations of the Montgomery inversion algorithm

Elliptic curve cryptography relies on efficient algorithiios
finite filed arithmetic. For instance, the elliptic curve ittd
signature algorithm requires efficient addition, multplion In developing the arithmetic architecture we primarily fo-
and inversion in the finite fields of sizes larger thalf?. cused on finding the minimal circuit to implement the Al-
This poses a significant problem in embedded systemerithm A efficiently. Since the architecture is build ardun
where computational power is quite limited and public-kethe idea of maximizing hardware sharing among operations,
operations are unacceptably slow[7]. An efficient way tthe multiplication, squaring and addition operations alte a
calculate multiplicative inverses is to use binary extehdeichieved by the same arithmetic core. The simplicity of
Euclidean based Algorithms. One such efficient inversiohlgorithm A and scaled arithmetic allows us to accomplish
algorithm is the Montgomery. However this algorithm usesll operations using only a few small state machines. The
only Montgomery arithmetics and renders to be unsuitalile farithmetic unit is depicted in Figure 2.

a special modulai. There is however an Algorithm proposedWhat follows is an outline for the implementation of basic
for Mersenne primes of the fori2f-1.[8] arithmetic operations as follows:

V. ELLIPTIC CURVE ARCHITECTURE

Fig. 1.
algorithm

200 ——r —————————— — = — —
= Mersgnne inv. ‘l
- Monlgomyinv,- 1

180
160
140r

120

L
300
iteraton number - k

200 400 500

Distribution ofk in Algorithm A and the Montgomery inversion

¢« Modulo Reduction Since the hardware works for

m = 27 + 1, 168 bit registers would be sufficient.
However, we used an extra bit to detect when the
number becomes greater than If one of the left-most
bits of the number (carry or sum) is one, the number is
reduced modulo m.

2168 — 2 (2167 4 1) —2=2m — 2 =m — 2 (mod m).
Hence the reduction is achieved by subtracting
2168 (or simply deleting this bit) and adding
m — 2 = (11...11111), (167 bits) to the number.

If both of the leftmost bits are 1 then :

2.(218) = 4.(21"+1)—4 = 4m—4 = m—4 (mod m).

Thereforem — 4 = (111...11101)3 (167 bits) has to be
added to the number and both of the leftmost bits are
deleted.

Subtraction Supposek is a 168 bit number which we
want to subtract from another number moduto The
bitwise complement of is found as

kr = (218 — 1)k = 2.2+ 1) -3 -k = -3 —k
(mod m). Thus —k = k/ + 3 (mod m). This means

to subtract k from a number we simply add the bitwise
complement of: and 3 to the number. It is worth noting
that our numbers are kept in a carry save represntaion ,
there are two 168-bit numbers represnting

Multiplication: We serialize our multiplication algorithm

by processing one bit of one operand and all bits of
the second operand in each iteration. The standard
multiplication algorithm had to be modified to make it
compatible with the carry save representation. Due toe
the redundant representation, the value of the leftmost
bit of the multiplier is not known. Hence the left to right

i rl B O e
/

xt M
!
i MUX /
cs
n4 n

i i nq"
CSAl A2
rl/‘:f n{’
Fig. 2. Block diagram of the arithmetic unit

multiplication algorithm many not be used directly. We
prefer to use the right to left multiplication algorithm.
There are 3 registers used for the multiplication: RO
(multiplicand), R1 (product) and R2 (multiplier). The
multiplication algorithm has three steps:

1. Initialization: the control circuit does this step.
The multiplicand is loaded to RO, the multiplier is
loaded to R2 and R1 is reset.

2. Addition: This step is only done when the rightmost
bit of register R2 is 1. The content of register RO is
added to R1.

3. Shifting: The multiplier has to be processed bit-by-bit
starting from right. We do this by shifting register R2 to
the right in each iteration of the multiplication. Since the
register R2 is connected to the comparator, the algorithm
terminates after this step if the number becomes 0
else the algorithm continues with Step 2. Note that no
counters are used in the design. This eliminates potential
increases in the critical path delay. The multiplicand
needs to be doubled in each iteration as well. This
is achieved by shifting register RO to the left. This
operation is performed in parallel with shifting R2, so no
extra clock cycles are needed. However shifting to the
left can cause overflow. Therefore, the result needs to be
reduced modulo m if the leftmost bit of the register RO
is 1.

Inversion: To realize the inversion operation there are fou
registers used to holdc,u andv, two temporary registers
are used for the addition of two numbers in carry-save

architecture. Two carry-save adders, multiplexers amdore research is needed in this field for more better and
comparator architecture are also utilized. The inversiaffective implementation[8]
algorithm shown in Algorithm A has 5 steps, which are

depicted in Figure 3. REFERENCES

[1] W. Diffe and M. E. Hellman., “New directions in cryptogray.” IEEE

: T : Transactions on information Theqrpp. 22:644—654, November 1976.
1: Intialize all registers [2] N. I. for Standards and Technology, “Digital signaturtarglard (dss).”
(b, ¢, u,v) — (1,0,a,m) Federal Registerp. 56:169, Aug 1991.

2: Shift off all trailing zeros and rotate b [3] N. Koblitz, “Elliptic curve cryptosystems.Mathematics of Computation
U u>Sebeb>>e (mod m) pp. 48(177):203—209, ‘Jan 1987.)

) S [4] A. J. Menezes., “Elliptic curve public key cryptosystefnKluwer Aca-
3: Check terminate condition demic Publishers, Boston, MA993.
if w= s returnd [5] F. R. Henriquez and C.K.koc., “Parallel multipliers kbdson special

irreducible pentanomials|/EEE Transactions on Computer8ug 2002.

4. Update variables [6] H.-S. Kim., “Efficient systolic architecture for modulanultiplication
(b, e, u,v) — (b+¢,b,u+ v, u); over gf(2),” PARA'04 State-of-the-Art in Scientific Computidgne 2004.
go back to step 2 [7] S. Baktir, “Efficient algorithms for finite fields, with gglications in

elliptic curve cryptography,” Master of Science, Worcesgolytechnic
)) . . Institute, 2003.
Figure 3: Hardware algorithm for inversion. [8] B. Sunar and E. Savas, “Low-power elliptic curve crypyghy using
scaled modular arithmetic.” IEEE, March 2 2004.

VI. RESULTS

The presented architecture was developed into Verilog mod-
ules and synthesized using Synopsys tools Design compiler
and Power Compiler. The resulting architecture was synthe-
sized for three operating frequencies. The implementation
results are shown in table 1.

Table 1: Implementation Results.

OP. Freq| Area | Power| Avg. Delay
(MHz) | (gates)| (mW) (msec)

20 30,333| 0.99 31.9
100 30,443| 4.34 6.3
200 34,390| 9.89 3.1

As depicted in the table the area varies around 30 K gates.
The circuit achieves its intended purpose by consuming only
0.99mW at 20 Mhz. In this mode the point multiplication
takes about 31.9 msec. Although this is not very fast, this
operating mode might be useful for interactive application
with strict power requirements. The design operates $grial
in one operand leading to a lower critical paths and much
smaller area in the design. Which translates to lower power
at a balanced frequency not so high and not so low[8].

VII. CONCLUSION

We demonstrated that scaled arithmetic, which is based
on the idea of transforming a class of primes into special
forms that enable efficient arithmetic, could be used irptdi
curve cryptography. Implementation results show that e u
of scaled modulai in elliptic curve cryptography offers an
efficient performance in terms of power. The use of the specia
modulai allowed for a superb inversion implementation.sThi
itself eliminated the need for projective coordinates treat
quired prohibitively a large amount of extra storage. Tha fa
that the same data path (i.e. arithmetic core) is used for the
filed operations leads to a very small chip area. Ellipticalve
cryptography offers a lot of promise in terms of security and
power requirement then the any other present cryptosystems

