
Analysis Of Exact Solution Of Linear Equation
Systems Over Rational Numbers By Parallel p-adic

Arithmetic
Siddharth Anand

School of Electrical and
Computer Engineering

Oregon State University
Corvallis, Oregon-97330
Email: anand@cs.orst.edu

Shriprakash Sinha
School of Electrical and
Computer Engineering

Oregon State University
Corvallis, Oregon-97330
Email: sinha@cs.orst.edu

Abstract— We study and investigate the p-adic arithmetic along
with analysis of exact solution of linear equation systems over
rational numbers. Initially we study the basic concepts involving
the p-adic numbers and why they form a better representation.

After that we describe a parallel implementation of an al-
gorithm for solving systems of linear equations over the field of
rational number based on the Gaussian elimination.The rationals
are represented ny truncated p-adic expansion. The approach
leads to error free computations directly over the rationals
without converting the system to an equivalent one over integers.

The parallelization is based on multiple homomorphic image
technique and the result is recovered by parallel version of
Chinese Remainder Algorithm.

I. I NTRODUCTION

Its very illuminating to think about the fact that some at
most four hundred years ago, professors at European univer-
sities would tell the brilliant students that if they were very
diligent, it was not impossible to learn how to do long division.
You see, the poor guys had to do it in Roman numerals. Now,
here you see in a nutshell what a difference there is in a good
and bad notation. (Dijkstra 1977)

We consider that a good scheme for representing numbers,
especially for computers, would have the following character-
istics. (a) All rational numbers are finitely representable. This
requires that the representation be variable-length. (b) The rep-
resentation is compact. It should require less space, on average,
than the fixedlength schemes commonly used in computers.
Since the numbers provided by a fixed-length representation
are not used equally often, compactness can be achieved by
giving frequentlyoccurring numbers short encodings at the
expense of longer encodings for less-frequent numbers. (c) The
addition, subtraction, and multiplication algorithms are those
of the usual integer arithmetic. The division algorithm is as
easy as multiplication, and it proceeds in the same direction as
the other three algorithms. This property is important for the
storage and retrieval of variable-length operands and results.

Although the desired representation is variable-length, there
is no implication that operations must be performed serially by
digit. Just as data can be retrieved and stored d digits at a time,

so the arithmetic unit can be designed to perform operations
d digits at a time. By choosing d to be large compared to the
average length of operands, we can obtain the speed of a fixed-
length design together with the ability to handle operands that
are not representable in a fixed length (Wilner 1972).

A. Background

Before we present our proposal, we shall briefly review
representations in common use. (For their history, see (Knuth
1969a).) Almost universally, the sequence of digits

.....di.....d3d2d1d0

is used to represent the nonnegative integer

n =
∑

i

dib
i

where b (the base) is an integer greater than one (usually
two or ten), and each digitdi, represents an integer in the
range0 ≤ di < b. As a rule, we do not write leading 0s. We
must break the rule, however, to represent zero (if we follow
it, there is nothing to write).

There is no direct representation of negative integers in
common use. Instead we prefix a unary operator to the
representation of positive integers. The combination of sign
and magnitude is indirect because, to perform arithmetic, we
may first have to apply some algebraic transformations. If
asked to add two numbers, we first examine the signs to
determine whether to use the addition or subtraction algorithm;
if we are using the subtraction algorithm, we compare the
magnitudes to determine which is to be subtrahend, and which
minuend. With a direct representation, if asked to add, we
simply add. The radix complement representation is direct in
this sense, but it includes only a finite subset of the integers.

Rationals are commonly represented by a pair of integers:
a numerator and denominator. In this form, multiplication and
division are reasonably easy, but addition and subtraction are
relatively hard, and normalization is difficult (Horn 1977).
When addition and subtraction are wanted more often than

multiplication and division, a representation that makes the
former easier at the expense of the latter would be preferable.
For this reason, we usually restrict our numbers to a subset
of the rationals known as the fixed-point or floating-point
numbers. By inserting a radix point in a sequence of digits
(fixed-point), or indicating by means of an exponent where
a radix point should be placed (floating-point), we represent
those rationals such that, in lowest terms, the denominator
divides some power of the base. In this form, addition and
subtraction are, after alignment of the radix point, the same
as for integers. With a variable-length representation, a major
diffculty with the usual division algorithm is that it proceeds
from left to right, opposite to the direction of the other three
algorithms. To simplify retrieval, processing, and storage, all
algorithms should examine their operands and produce their
results in the same direction.

The left-to-right division algorithm gives us a way of
extending the fixed/floating point representation to include all
positive rationals: an infinite but eventually repeating sequence
of digits can be finitely denoted by indicating the repeating
portion. On paper, the repeating portion is sometimes denoted
by overscoring it; for example,611/495 = 1.234. A minor
annoyance is the fact that representations are not unique; for
example,0.9 = 1 and 0.49 = .5. A major annoyance is that
further arithmetic is awkward: addition normally begins with
the rightmost digit, but a sequence that extends infinitely to
the right has no rightmost digit.

The usual representation of nonnegative integers can be
extended in various ways. The base may be negative (Songster
1963), or even imaginary (Knuth 1960). In the balanced
ternary representation (Avizienis 1971), the base is three, and
the digits represent the integers minus-one, zero, and one.
Our extension, which we now present, is in quite a different
direction.

B. Construction Of Representation

To construct our representation, we shall follow the ap-
proach of Hensels p-adic arithmetic (Hensel 1908, 1913).
Hensel begins with the usual representation of nonnegative
integers, that is, a sequence of digitsd3d2d1d0. Each digit
di represents an integer in the range0 ≤ di < b , where the
baseb is an integer greater than one. He then constructs the
representation of other numbers (all rationals, some irrationals
and some imaginary numbers (Knuth 1969b)) by means of
arithmetic. We shall limit ourselves to rational numbers, and
give a finite representation of them that is implementable in
computer hardware.

C. Properties Of The Proposed Number System

Excluding the radix point or exponent, the general form of
our representation is

dn+mdn+m−1......dn+1dndn−1......d2d1d0

The number represented is

n∑
i=0

dib
i −

n+m∑
i=n+1

dib
i/(bm − 1)

where b is the base of the representation. To justify this
formula, we shall break the digit sequence into two parts: the
digits to the left of the quote will be called the negative part,
and the digits to its right will be called the positive part. The
positive part was our starting point for the construction of the
representation.

dn.....d0 =
n∑

i=0

dib
i

The negative part can be found as follows.
dn+mdn+m−1.....dn+1’

= dn+mdn+m−1.....dn+10.....0 + dn+mdn+m−1.....dn+1

= dn+mdn+m−1.....dn+1 ∗ bm +
n+m∑
n+1

dib
i−n−1

Therefore

dn+mdn+m−1.....dn+1 = −
n+m∑
n+1

dib
i−n−1/(bm − 1)

Putting the positive and negative parts together, we find

dn+m.....dn+1dn.....d0 = dn+m.....dn+1 ∗ bn+1 + dn.....d0

and hence we obtain the above formula.
From the formula, we see that sign determination is trivial.

If both positive and negative parts are present, we merely
compare their leading digits. Assuming the representation to
be normalized,dn+m 6= dn.

if dn+m < dn, the number is positive. ifdn+m > dn, the
number is negative.

If one part is absent, the sign is given by the part that is
present. If both parts are absent, the number is zero.

The above paragraphs suggest two comparison algorithms.
The first is to subtract the comparands, then determine the
sign of the result. The second is to convert the comparands
to right-repeating form, then perform the usual digit-by-digit
comparison. The first has the advantage that it is a right-to-left
algorithm, but the second may have an efficiency advantage.

II. BASICS OF P-ADIC ARITHMETIC

For any positive integerm, denoteZm the ring of integers
modulom and by|.| the canonical ring homomorphism from
Z to Zm. Let N be the set of natural numbers.for a given
prime p, a rational numberα can be represented in a unique
way as

α = (c/d) ∗ pe,

wherec,d and e are integers,c,d andp pairwise relatively
prime andd positive.Furthermoreα can be uniquely expressed
in the following form:

α =
∑
i≥e

aip
i whereai ∈ Zp,

The infinte sequence (aeae+1....a−1a0a+1...) is called thep-
adic representationof α. We use atruncated representation,
defined as follows.

Definition1 (Hensel Codes).Let p be prime andr ∈ N.
For any rational numberα = (c/d) ∗ pe, where c,d and p
pairwise relatively prime, theHensel codeHp,r(α) of length
r of is the pair

(mantα, expα) = (a0a1.....ar−1, e),

where ther leftmost digits of the p-adic representation ofα
ande are called themantissaand theexponent, respectively.

One easily verifies that we have

|c ∗ d−1|pr =
r−1∑
=0

ai · pi ∈ Zpr .

Let Hp,r denote the set of all Hensel codes w.r.t the prime
p and the code lengthr, Hp,r := {Hp,r(α) |α ∈ Q}. The
forward and backwards mapping betweenQ and Hp,r are
algorithmically computed by the Extended Euclidian Algo-
rithm(EEA), as we state in the following theorems.

Theorem2 (Forward Mapping). Let p be prime andr ∈
N. Let α = (c/d) ∗ pe be a rational, such thatc,d and p
pairwise relatively prime. Then the mantissamantα of the
codeHp,r(α) is computed by EEA applied topr and d as

mantα ≡ c · y (mod pr),

where y is the second output of the EEA.
Definition3 Farey Fraction Set. let N(p,r) = b

√
(pr −

1)/2c.TheFarey fraction setFp,r of orderN(p,r) is the subset
of rational numbera/b such that:

a, b ∈ N, 0 ≤ a ≤ N(p,r), 0 ≤ b ≤ N(p,r).

Theorem4 (Backward Mapping). Let p be prime,r ∈ N
and c/d ∈ Fp,r.If m is a value in theZpr of the Hensel code
mantissa related toc/d, then the EEA applied topr and m
computes a finite sequence pair(xi, yi) such thatxi/yi = c/d
for some x.

Arithmetic operations on Hensel codes are carried out, digit
by digit, startting for the leftmost digit, as in the usual base-
p arithmetic operations. An addition (or a substraction) can
give a result in which some leftmost digits are equal to zero.
in this case we that the addition (or substraction) produced a
pseudo-Hensel code.

Definition5 (Pseudo-Hensel codes).A pseudo-Hensel code
is a code such thata0 =ak = 0, for somek with 0 < k ≤
r − 1.

This loss of significative digits does not permit one to
execute division.It can be show that it is possible to overcome
this problem by introducing a new approach for both division
and for the treatment of pseudo-Hensel codes. These resultsa

extend the applicability of p-adic arithmetic to a wide class of
computing problems.

In order to reduce the occurences of pseudo Hensel codes
by choosing an appropriate basep,we remark that probability
of finding a leading zero in a code is1/(p−1). The probability
of obtaining a leading zero after addition of two hensel codes
given by the probabilty of findinga (1 ≤ a ≤ p) as leading
digit of first code andp− a as the leading digit of the second
code, that is1/(p−1)2. the same occurs for substraction. from
the computational point of view, the best possible choice for
p is hence made by takingp to be the greatest prime number
less than the maximum integer representable in a memory
word. On the other way we want to avoid overflow during
computations, hence we will fix the basep on the ground of
the word size w of our computer:p ≤ 2w/2 + 1.

The possiblity of performing the exact arithmetic operations
onHp,r is ensured by the following theorem.

Theorem6 Let p be prime, r ∈ N, α1, α2 ∈ Q, φ ∈
{+,−, ·, /} an arithmetic operator. If

α1φα2 = α3, with α3 ∈ Fp,r

then there exits precisely oneHp,r(α3) such that

Hp,r(α3) = Hp,r(α1)φ′Hp,r(α2)

whereφı́s the operator inHp,r which corresponds toφ in
Q

A scheme for a general computation consists of mapping
on Hp,r the rational input numbers and then performing the
computations over theHp,r. However by Theorem4, the
inverse mapping can be performed only when the expected
result belongs toFp,r. This means that we need a bound on
the size of the result, in order to make the right choice forp
andr.

III. B OUNDS FOR THE SOLUTIONS

Before showing the parallel implementation in the next ses-
sion, we present the sequential method of Gaussian elimination
and an estimate for the size of the result. The problem is stated
as follows.

Problem Given A ∈ Qn∗n and b ∈ Qn, find, if it exits, a
vectorx = (x1,, xn) ∈ Qn such that

Ax = b.

We consider the caseA ∈ Zn∗n and b ∈ Zn first. By
Cramer’s rule we know that

xi = |Ai|/|A|,

where|A| denotes the determinant ofA, andAi is the matrix
obtained fromA by substituting theith column byb. Now let
a be the maximal entry in a matrixM ∈ Zn∗n, then one easily
proves by induction onn that|M | ≤ n!an. From this andxi =
|Ai|/|A| we obtain that both neumarator and denominator of
anyxi are bounded byn!an, wherea is now a maximal entry
in A and b. from this bound we determine the value ofr,

such that the result is inFp,r for a given primep. From this
definition it suffices thatn!an ≤ b

√
(pr − 1)/2c.

considering the square on both sides of the inequality we
obtain2(n!an)2 + 1 ≤ pr. This implieslogp(2(n!an)2 + 1) ≤
logpp

r or, equivalently,

r ≥ logp(2(n!an)2 + 1).

Hadamard’s inequality gives another bound for the determi-
nant

|A|2 ≤
n∏

i=1

(
n∑

j=1

a2
i,j)1/2.

From this bound the following condition is derived

pr ≤
n∑

i=1

|bi|
n∏

i=1

(
n∑

j=1

a2
i,j)1/2.

It should be remarked that both bounds are still quite con-
servative, since a smaller choice ofp andr is often sufficient.
in the general caseA ∈ Qn∗n andb ∈ Qn the bound for the
numerator and denominator of thexi’s becomesn!an(n+1).
this follows again from Cramer’s rule by considering the
equivalent system obtained fromA by multiplying each row by
the common denominator of all entries in that in that row and
of the ith entry in b, i.e., multiplying a number of magnitude
at mostan+1.

IV. PARALLEL IMPLEMENTATION

We describe the parallelization on, say,k concurrent pro-
cessors. We first compute thek prime numbersp1,, pk

at random and the corresponding code lengthr such that
the entries of the solutionx are contained inFg,r, where
g = p1,, pk.

At this point k parallel tasks are started. Each of them
computes the image of the problem w.r.t one prime inp-
adic representation of the rational entries, i.e.,Hpi,r(A)
and Hpi,r(b). By a certain abuse of notation we denote by
Hpi,r(A) the matrix (ãi,j) with ãi,j = Hpi,r(ai,j), and
analogously forHpi,r(b).

Then for each processor a sequential implementation of
Gaussian elimination is executed viap-adic arithmetic. The
main steps of this algorithm are given below.

Gaussian Elimination for p-adic Computations
Input : n: degree of the linear system;A = (ai,j) ∈ Qn∗n

n-dimensional square matrix;b = (a1,n+1,, an,n+1) ∈ Qn

:column vector;p : prime base;
Output :x = (x1,, xn) ∈ Qn: solution ofAx = b, if it

exits;
Begin
1.1 • Compute the maximum integer numbera among

the numerators and denominators of the rational
entries inA andb.

• Compute the truncation orderr, as shown inr ≥
logp(2(n!an)2 + 1).

1.2 Apply the mappingHp,r to all the entries ofA and
b.

1.3 • l := 0
• for i := 1 to n {

– l := l + 1
– for j := i to n + 1 {
∗ Divide ai,j by ai,i

– }
– for h := l + 1 to n {
∗ Multiply the ith row by ah,l

∗ Subtract the newith row from thehth row
of the system obtained at the last iteration.
This is the newhth row.

– }
• }

1.4 RecoverHp,r(x1),, Hp,r(xn)

End
Gaussian Elimination computes solutionsx(i) ∈ Hn

pi,r for
i = 1,, k. After collecting all of thex(i) we executek
concurrent calls of CRA. Then the parallel version of CRA is
applied on each sequence componentsx1

j ,, x
k
j , obtaining

the componentxj ∈ Hp1.....pk,r of the solution vectorx.
From the assumptions made onr, the list {x(1),, x(k)}

of results obtained in this way can be mapped back to a vector
x ∈ Fn

g,r (vector over the Farey fraction set) by the CRA. From
Theorem6 we know that if the solution exits in theFg,r, then
it is unique.

After this, the resultx only need to be converted from the
p-adic to the usual representation by the backward mapping,
applied in parallel on each component.

A scheme of the parallel computation is given below.
Parallel Computation Scheme

• INPUT A,b
• PRIME COMPUTATION ↓
• p1,, pk

• FORWARD MAPPING ↙ ↓ ↘
• HENSELCODES Hp1,r(A),Hp1,r(b) ..

Hpk,r(A),Hpk,r(b)
• ↓ ↓ ↓
• GAUSS ALGORITHM ↓ ↓ ↓
• ↓ ↓ ↓
• SOLUTIONS x(1) = Hp1,r(x) .. x(k) =

Hpk,r(x)
• SYNCHRONIZATION ↘ ↓ ↙
• ↓
• x1,, xk

• ↘ ↓ ↙
• ↘ ↓ ↙
• x1

1, .., xk
1 .. x1

n, .., xk
n

• CRA ↓ ↓ ↓
• UNIQUE SOLUTION x1 ∈ Hp1..pk,r ... xn ∈

Hp1..pk,r

• INVERSE MAPPING ↘ ↓ ↙
• ↓
• OUTPUT x

V. CONCLUSION

The above paper was prepared with an aim to throw light
on the effectiveness of p-adic numbers and arithmetic along
with its application to linear system equations.

A description of the parallel algorithm was given for solving
the system of linear equations over rational number. The use of
p-adic numbers help in doing error free computations directly
over the field of rational numbers, without converting the
system to an equivalent problem over integers.

ACKNOWLEDGMENT

We would like to thank Professor Koc for guiding us in the
study of p-adic numbers and its application to system of linear
equations.

REFERENCES

[1] C. K. Koc, A Tutorial on p-adic Arithmetic, Ore-
gon State University, Corvallis, Oregon, USA, 2002,
http://islab.oregonstate.edu/koc/papers/r09padic.pdf

[2] Eric C. R. Hehner and R. Nigel Horspool,A New Representation of the
Rational Numbers for Fast Easy Arithmetic, SIAM J. Comput., Vol.8,
No.2, pages 124-134, 1979, citeseer.nj.nec.com/329968.html

[3] Roberto PIRASTU Carla LIMONGELLI,Exact Solution of Linear
Equation Systems over Rational Numbers by Parallel p-Adic Arith-
metic, No.94-25, Johannes Kepler University, Linz, Austria, 1994, cite-
seer.nj.nec.com/limongelli94exact.html

[4] G. Kapoulas, Computable p-adic Numbers, 1999, cite-
seer.nj.nec.com/kapoulas99computable.html

[5] Koc Guvenc And,Exact Solution of Linear Equations on Distributed-
Memory Multiprocessors, citeseer.nj.nec.com/386643.html

[6] Peter Kornerup,A Systolic, Linear-Array Multiplier for a Class of Right-
Shift Algorithms, IEEE Transactions on Computers, Vol.43, 8, paper 892-
898, 1994, citeseer.nj.nec.com/kornerup94systolic.html

