Hardware Design to Compromise Between Area and
Speed: CRYPTONII

Nirut Chalainanont
Department of Electrical & Computer Engineering,
Oregon State University, Corvallis, Oregon 97331.
E-mail: chalaini@ece.orst.edu

Abstract— CRYPTON is a 128-bit block cipher submit-
ted to the NIST as a candidate algorithm for the AES (Ad-
vanced Encryption Standard). CRYPTONII is the modified
version of CRYPTON hardware model to compromise be-
tween area of the design and speed of encryption process.
CRYPTONII resulting in up to 2.47 Gbps in data encryp-
tion rate with less than 40,000 gates.

I. INTRODUCTION

CRYPTON is a SPN(substitution-permutation network)-
type cipher based on the structure of SQUARE [1]. Hard-
ware implementations of CRYPTON are efficient because
the encryption and decryption use the same circuits, and
no large logic for S-boxes required. The algorithm uses only
exclusive-OR operations which can be done in parallel [3].

CRYPTON has the following features [2]:

e 12-round self-invertible cipher with 128-bit block size and
key length up to 256 bits.

o Guaranteed security against existing attacks, such as di
erential and linear cryptanalysis.

o High performance in SW: 362 cycles on Pentium
I11/450MHz (about 150 Mbps).

e Fast key scheduling: much faster than one-block encryp-
tion.

o Efficiency in HW implementation: a Gbps range with
low-cost gate array implementation.

This paper is organized as follows. Section IT briefly
describe CRYPTON algorithm. Section ITI shows CRYP-
TONII hardware design and section IV is the summary
of speed and area estimations of CRYPTON and CRYP-
TONII model.

II. CRYPTON ALGORITHM

CRYPTON represents each 128-bit data block 4 x 4 byte
array and processes it using a sequence of round trans-
formation. Fach round transformation consists of four
steps, byte-wise substitution, column-wise bit permutaion,
column-to-row transposition and key addition.
¢ Byte-wise substitution T: Substitute 4 x 4 byte array
using four 8 x 8 S-boxes S; (0 < i < 3). The four S-
boxes are derived from one 8 x 8 involution S-box S (i.e.,
S = S~1) and satisfy the following inverse relation :

Sy =85",83=8;"

Two different transformations are used, T, in odd rounds
and Y. in even rounds.They are defined as :

B =T,(A),bij = Sitijmoda(asj)

B = TY.(A),bij = Sitjt+2mods(ai;)

Four S-boxes are arranged so that the following holds for
any 4 x 4 byte array A:

To(Te(A)) = To(re(A)) =A

Figure 1 shows the byte-wise substitution Y.

Sa | S| S| S S1 | Sg | Sa | Sz
Do | Sa | Sa | & Sa | S | Sp | O
G1 | S| Sa | S Sz | 53 | &1 | 5o
AR 5 | & | & &

o T
Figure 1: The byte-wise substitution Y.
e Column-wise bit permutaion 7: The bit permutation

7 bit-wise mixes each byte column of 4 x 4 byte array using
four masking bytes m; given by

mo = 0zfc,m; = 0xf3,ms = Ozcf,m3 = 0z3f
Column permutations 7; (0 <4 < 3) are defined as
[b3, b2, b1, bo]" = II;([as, az, a1, ao]")

3
bj = zory_q(MitjtkmodsDag)

We also use two different versions of bit permutation, 7,
in odd rounds and 7, in even rounds. Let A’ be the
i-th byte column of a 4 x 4 byte array A, i.e., A* =
(a3i, asi,a1i,a0;)t. Then the bit permutations 7, and T
respectively are defined as :

o(A) = (m3(A%), m2(A%), m1 (A1), 70 (A%))
me(A) = (m1(4%), m0(A%), m3(A"), m2(A%))

Figure 2 shows the column-wise bit permutation 7.

q
2|

E
3

| Tl

Figure 2: The column-wise bit permutation .

e Column-to-Row transposition 7: The byte transpo-
sition rearranges a 4 x 4 byte array by moving the byte at
the (¢,)-th position to the (j,:)-th position. See Figure 3

for B = 7(A). Tt is also involution, i.e., 771 = 7.
A0 | aoa | 2w | g | 2o BIO] | g | a2 | 210 | oo
A | @z | w2 | @ |aw | & B[] | an | a2 | an | an
A2l | asa | am | an | amo | = B2 | a2 | a0 | ;12 | a2
A3 | aza | e | as1 | asa B[3] | asa | azs | @y | aes

Figure 3: The column-to-row transposition 7.

e Bit-wise key addition §: This process simply
exclusive-or round keys with data words. For a round
key K = (K|[3],K][2], K[1],K[0])},B = 6k (A) is defined
by B[i] = A[i]zorK][i] for i = 0,1,2,3. And 6" = k.

The encryption process repeats 12 iterations of the same
transformation. However, 12-round encryption process
needs 13 round keys, from round0 key to round12 key. Fig-
ure 4 shows top level structure of CRYPTON.

Input @ 4 32-bit words

L‘ round kys
¥ | Ko —-—| Ky Addition | imitial key addition
256-hit s
User Kay g Biyte Suhstitution %
wrhey | oh repeit this round
e Bit parmuation and Byte Transpositiony function 12 times
ﬂ Ki e Key Addition
! {
c - .
Byte Transpotion
Rit Permutation Duiput
Iransformation
Byle Transpotion

Clutput @ 4 32-hit worls

Figure 4: Top Level Structure of CRYPTON.

First, the 128-bit input data will be exclusive-OR with
Ko (round0 key). The result goes to roundl transforma-
tion. Then exclusive-OR the result from transformation
with K3 (roundl key). The result goes to round2 transfor-
mation. Repeat this process for 12 rounds then the result
of round12 transformation exclusive-OR, with K5 goes to
Output transformation in the final step. Finally, 128-bit
encrypted data is generated from output transformation.
The decryption process is the same as encryption process
using different key schedule.

The previous designs for CRYPTON Version 1.0 use
two different models, Two-Round Model and Full-Round
Model. For details, refer to [3]. Two-Round model uses
small area of design by reuse the funtional blocks, but it re-
sults in longer encryption time. It needs 7 cycles to perform
128-bit data encryption. Figure 5 shows encryption model
of Two-Round model. On the other hand, Full-Round
model uses loop unrolling technique which resulting in large

area design but faster in execution. Figure 6 shows encryp-
tion model of Full-Round model. CRYPTONII model is
the compromise between these two models which resulting
in high speed encryption with small area.

128 batTnput data v v Pdn

If (round = 0) then M0 el se Mn

' A

If (key changed) then U else A

Even round key
Eyte Substitution, odd

256-bit Key
User key seperator
Bit Permutation, odd

Store in register for Eyte Transposition, odd
key schedule module Tr *‘

Qdd round ke

If (key changed) then Velse B

Byte Substitution, even

Eit Permutation, even

Store in register for
key schedule module® =

Eyte Transpositon

EByte Transposition, even

Chtput

Bit Permutation, even Tesssfommation

Byte Transposition

12841t Output Data

Figure 5: Encryption Model of Two-Round Model.

128-tat Input data

This sharing scheme can reduce area of the design, but it
needs one more clock cycle for key expansion process when
the key has been changed.

Byte Subshitution, odd
Bat Permutation, odd

Byte Transposition, odd

K, it

Byte Substitution, even

Bit Permutation, even

Byte Transposition, even

K, Pt

!

Byte Substitution, even

Bit Permutation, even

Byte Transposition, even

Koy »lt

Byte Transposition

Cutput

Bat Permutation, even o T

Byte Transposition

128 -t Output Data

Figure 6: Encryption Model of Full-Round Model.

III. HARDWARE DESIGN OF CRYPTONII

CRYPTONII combines the advantages of Two-Round
model by re-use the functional block to reduces the area
of the design with the loop unrolling technique to reduces
number of cycles used in encryption process. By loop un-
rolling of 4, CRYPTONII performs 4 iterations per cycles.
Each cycle contains 2 odd rounds and 2 even rounds. Fig-
ure 7 shows the encryption model of CRYPTONII.

The first multiplexer selects between the input data in
round0 and the data from previous cycle (M,,) in roundl
to round12. Because CRYPTON uses only simple opera-
tions, we can reduce area of the design by share some logic
blocks. For example, CRYPTON has Byte Substitution
operation both in key scheduling module and encryption
module. Thus, the Byte Substitution modules are shared.
These modules are used for key expansion in case of the
user key has been changed. The multiplexers will select
U/V as their input to the Byte Substitution module and get
the expanded key (U,./V;) as the output. These expanded
key will be stored in 128-bit register for key schedule mod-
ule to read and generate round keys. In the encryption
process, the multiplexers will select the data from previ-
ous round (A/B) to be input to Byte Substitution module.

128-bit Tnput data v v Ivdn
If (round = 0) then MO0 else Mn
Even round key
J A
If (key changed) then U else A
256-bit Eey
User key oanbated BEyte Substitution, odd
Bit Permutation, odd
Store 1n register for EByte Transposbon odd
key schedule module® Te |
Qdd round ke: »t
v B
v
If (key chanpged) then Velse B
Byte Substitution, even
Eit Permutation, even
Store in register for Byte Transposition, even
key schedule modulet— 3
Even round key
Byte Substtuton, odd
Bit Permutation, odd
Byte Transpositi on, odd
Odd round key
Byte Substitution, even
Bit Permutation, even
Byte Transposition, even

Eyte Transpositon

Chtput

Bit Permutation, even Tesafannation

Byte Transpositon

12841t Output Data

Figure 7: Encryption Model of CRYPTONII.

Four keys needed in each cycle, 2 even round keys and 2
odd round keys. These keys are generated by key schedule
module. Figure 8 shows the structure of key scheduling

module.
l’v" Vo U Tn i
Tf G ==0) then V_else Vn If i— O then T else Un
Compute Compute | |
E——FRoundi » e ounditl » K
e e
=z v y B
Update Update
Ezxpanded
[Expanded b
ey EY
Compute
By i {Round e b Rouad i3+ ey
ey ey
v h 4
(Update gp datz i
[Expanded kXPﬂIl e
ey £y
128-bit regjster 128-bit register

Ewen round keys Odd round keys

Figure 8: Key Scheduling Module for iteration it".

From Figure 8 there are two main parts in key scheduling
module. The left part generates 2 keys for even round i and
i4+2. The right part generates 2 odd round keys for round
i+1 and i+3, wherei = 0,4,8 and 12. Initially, when i=0 the
multiplexer will select U’/V’ which is the output from 128-
bit register that store expanded key Ur/Vr. Then U’/V’
are fed into key computation module to compute Ky and
K. These values also used for updating expanded key for
using in next round key computation.

IV. REsULTS

These are estimated results based on Synopsys Design
Compiler and Hyundai 0.35 ym gate array library. Table 1
shows area and speed of CRYPTONII compare with two-
round model and full-round model [3]. These results are
optimized in term of encryption speed.

Table 1: Estimated area and speed for Two-round
model, Full-round model and CRYPTONII.

Model Total gates | Minimum clock period (ns) | Time to encrypt one block (ns) | Throughput (Gbps)
Two-round 28,179 10.23 71.61 1.66
Full-round 93,929 44.30 44.30 2.69

CRYPTONII 38,348 12.05 48.20 2.47

From the table, total gates indicates number of gates in
the whole system, encryption module and key scheduling
module. Gate means a 2-input NAND gate that equivalent
to 4 transistors. Minimum clock period is the minimum
time required for one cycle of process. Time to encrypt
one block is the longest path delay from data input to the
encrypted data output.

The results show that CRYPTONII model has only
10,000 gates more than Two-round model, but it has much
higher encryption rate, upto 2.47 Gbps, which is almost
equal to the speed of Full-round model.

REFERENCES

[1] J.Daemen, L.Knudsen and V.Rijmen, “The block cipher Square,
In Fast Software Encryption,” in Lecture Notes in Computer
Science, No.1267, Springer-Verlag, Ed. 1997, pp. 149-171.

[2] C.H. Lim, “Specification and Analysis of CRYPTON Version
1.0,” 1999.

[3] E. Hong, J.-H. Chung, and C. H. Lim, “Hardware design and
performance estimation of the 128-bit block cipher CRYPTON,”
in Lecture Notes in Computer Science, No. 1717, G. K. Ko¢ and
C. Paar, Ed. 1999, pp. 49-60.

[4] E.Biham, “A Note on Comparing the AES Candidates,” Pro-
ceedings of the Second Advanced Encryption Standard Candidate
Conference, Rome, Italy, 1999.

[5] C.H. Lim, “A Revised Version of CRYPTON - CRYPTON Ver-
sion 1.0,” Proceedings of the 1999 Fast Software Encryption
Workshop, 1999,

