
1

AES implementation on Smart Card
Pongnukit Juthamas, Tingthanathikul Witit

Abstract— This paper focus on the cryptographic algo-
rithm on smart card. Many algorithms are used to imple-
ment on smart card. The AES implementation is the one of
many techniques and will be presented in this paper. The
Advanced Encryption Standard (AES) is a symmetric-key
block cipher algorithm, which is defined in the Federal Infor-
mation Processing Standards Publication and uses keys with
the lengths of 128, 192, and 256 bits and processes block
lengths of 128 bit. However, recently discovered power and
timing attacks. Then AES requires a very cautious approach
to evaluate smart-card suitability. In this paper we will also
study a method for secure implementation of the AES. Data
masking technique is one method which is the most widely
used countermeasure against power analysis and timing at-
tacks at a software level.

I. Introduction

The smart card becomes more important and widely use
in our daily life. This is a credit card sized plastic card em-
bedded with an integrated circuit chip. It is a card that can
be used in many applications such as identification card,
medical history card, and also debit and credit card that
are using everywhere. Therefore, it is important smart card
is secure and safe enough to store any information. Then
it requires strong security protection and authentication.
The Advanced Encryption Standard (AES) encryption al-
gorithm for smart cards has been studied in this paper. In
AES algorithm, most operations work on bytes. Therefore,
every byte that appears as an intermediate result must look
random to protect against side channel attacks. This paper
will talk about brief description of the advanced Encryption
Standard algorithm, and then the implementing AES en-
cryption and decryption by using data masking techniques.
Also, we will talk about attacks in AES implementation in-
cluding zero attack, power attack, and timing attack.

II. Overview of AES algorithm

The Advanced Encryption Standard (AES) is a
symmetric-key block cipher algorithm, and uses keys with
the lengths of 128, 192, and 256 bits and processes block
lengths of 128 bits. Internally the AES implements the
Rijndael algorithm. Rijndael is an iterated block cipher,
meaning that the initial input block and cipher key un-
dergoes multiple transformation cycles before producing
the output. Each intermediate cipher result is called a
State. Rijndael can operate over a variable-length block
using variable-length keys of a 128, 192, or 256 bits key to
encrypt data blocks that are 128, 192, or 256 bits long, and
all nine combinations of key and block length are possible,
but AES contains only some of Rijndael’s total capabilities.
AES encryption and decryption are based on four different
transformations that are performed repeatedly in a certain
sequence; each transformation maps an input state into an
output state. The transformations are grouped in rounds

and are slightly different for encryption and decryption.
The number of rounds depends on the key/block size. Fig-
ure 1 illustrates the general structure of the AES algorithm.
Compared to encryption, decryption is simply an execution
of the inverse transformations in the inverse order.

Fig. 1. The structure of the AES encryption and decryption algo-
rithms.

III. AES implementation

The AES key changes frequently, maybe each block of
data. One issue that arises in software implementations
is the basic underlying architectures. The performance of
AES or any other encryption algorithm depends on a par-
ticular high-level language used. In most cases, the soft-
ware is strongly affects the performance. This increases
the difficulty of measuring performance across a variety
of platforms. It is found that Rijndael performed better
on some platforms. For Rijndael, key setup or encryp-
tion/decryption is noticeably slower for 192 bits key than
for 128 bits key, and slower still for 256 bits keys. Rijndael
specifies more rounds for the larger key sizes, affecting the
speed of both encryption/decryption and key setup.

2

A. AES encryption and decryption using log/alog tables

We suggest a method that combines a full protection
against side channel attacks(including zero attack) with
low memory requirements and low computational costs.
This became possible due to a change of representation
of field elements and using so called log and alog tables for
arithmetic computations in Galois field on masked data.
A polynomials a0 + a1x + ... + an−1x

n−1, where all ai

are all elements in GF (2) represents elements in GF (2)
that is a standard basic to do calculation in a finite filed
GF(2n) and addition is done modulo 2 ,However, new rep-
resentation is used in this paper. It is based on the fact
that all non-zero elements in a finite finite field GF(2n)
can be obtained by exponentiation of a generator in this
filed. So after choosing a basis for GF(2n), we look for
a field generator γ and calculate all pairs (γ, i) such that
α = γi, 0 ≤ i ≤ 2n−1, α ∈ GF (2n) Such representation of
non-zero elements is GF(2n) is unique for a fixed primitive
element γ; i is the discrete logarithm of α with respect to γ
There are two table that store α, and i that is called a log
table and an alog table, also each table takes 2n − 1 words
of n bits.

The calculation in GF(2n) use log/alog table , so it
can avoid all Mips-intensive operation. A sum of two
file elements, α and β is calculated with three table look-
ups: α.β = alog[(log[α] + log[β]) mod(2n − 1)]. An in-
version operation on a non zero element from GF(2n)
can be calculated with two table lookups only: α−1 =
alog[-log[α] mod(2n − 1)] Inversion is defined only for non
zero elements, but zero is always mapped into itself by con-
version. Namely, log[0] = 2n − 1 and alog[2n − 1] = 0.

B. Implementation of round operation using log/alog tables

Maintaining pre-computed tables to simplify operations,
combining different operation of the round transformation
in a single set, was suggested for AES. This approach ba-
sically combines the matrix multiplication required in the
MixColumn operation with the S-box, and involves 4 tables
with 256 4-byte entries.

The solution is to trade memory for speed, and
use two 256-byte lookup tables for the SubByte and
InvSubByte operations, while implementing the Mix-
Column/InvMixColumn operations separately. Each call
to the MixColumn or InvMixColumn operations results in
sixteen field multiplications. A straightforward implemen-
tation of the multiplication operation in the field is Mips-
intensive.

Moreover, another is to implement field multiplication by
repeated application of the xtime operation.This approach
involves slight computational overhead and is less efficient
than table lookups, but saves memory, and is often used
for memory-constrained devices and 8-bit microprocessors.

The log/alog tables have been used to provide an efficient
software method to compute the MixColumn and InvMix-
Column operations. In comparison with a conventional
table lookup for MixColumn/InvMixColumn, the new so-
lution reduces memory requirements from 6 × 256 bytes to

2 × 256 bytes only, which is an important factor for smart
cards.

Thus, the same log/alog tables can be used in both, the
MixColumn and SubByte operations for encryption, and in
the InvMixColumn and InvSubByte operations for decryp-
tion. Sharing log alog tables reduces the total memory re-
quirements for complete AES implementation to 512 bytes
only. At the same time, all Mips-intensive (and thus, power
consuming) field arithmetic operations are replaced by ta-
ble lookups, ensuring not only memory but also time and
power efficient implementation. As an additional bonus,
an overall program that realizes both, encryption and de-
cryption, has a small footprint.

The combination of these three properties makes the de-
scribed solution ideal for smart cards and related embedded
devices.

IV. Protection against side channel attacks
with data masking

Correlation between the physical measurements taken
during computation and the internal state of the processing
device, which itself is related to a secret key. For exam-
ple, power consumption, EMF radiation, time of compu-
tations. The Differential Power Analysis(DPA)attack uses
correlations between power consumption patterns and spe-
cific key-dependent bits which appear at known steps of
the cryptographic computations. There are many way to
combat side-channel attacks. The most powerful software
countermeasure is bit splittting which in case when each
bits is split into two shared can be reduced to masking
data with random values. The idea how to apply data
masking to AES is simple. The message, as well as the
key, are marked with some random masks at the beginning
of computations, and other things are almost the same as
usual. However, the value of the mask at the end of some
fixed step must be known in order to re-establish the ex-
pected value at the end of the execution, and it is called
mask correction

A traditional XOR operation is used as a masking coun-
termeasure.The computation is compatible with the AES
structure except for SubByte, which is the only non-linear
transformation since it uses inversion in the field. Also,
it is easy to compute mask correction for all transforma-
tions in around, apart from the inversion step of the Sub-
Byte. If every byte A of the (initial or intermediate) state
is masked with some random mask R, then OP(A⊕R) =
OP(A)⊕OP(R), where OP ∈ MixColumn/invMixColumn,
ShiftRow/InvShiftRow, AddRoundKey. Thus, given any
random mask, it is easy either to pre compute the cor-
responding mask correction, or compute it on the fly in
parallel with computations on masked data.

In Transformed masking method, first and additive mask
is replaced by a multiplicative mask in a series of multiply
and add operations in GF(28),after which normal inversion
takes place, and finally, a transformation of a multiplica-
tive mask into an additive mask is carried out. Unfortu-
nately, a multiplicative mask does not blind zero element

3

in GF(2n),enabling a so-called zero attack.

V. Inversion on masked data using
log/alog-tables

We want to find value (A−1)⊕ (R) by the the most effi-
cient method, and never revealing A and A−1 in a process.
Also, we have information of A⊕R, where A is a byte of a
state and R is some uniformly distributed random value.
Here R′ can be either equal to R or any other(uniformly
distributed) random value.

The solution to find the most efficient method is based
on the following observation. First, a new representation
allows us to infer how ((A)⊕ (R))−1 differs from A−1.

(1) A field element A⊕R can be represented as γy =
γi⊕γr where γi is a representation of the unknown byte A
of the state, and γr is a representation of known random
random mask R.

(2) By simple formulae manipulations, we obtain

γy = γi ⊕ γr = γi.(γr−i ⊕ 1) .

(3) Therefore, we can write

γ−y = (γi ⊕ γr)−1 = (γi)−1.(γr−i ⊕ 1)−1 .

Hence, (γr−i ⊕ 1)−1 is the mask correction for “masked
inversion”. Next, we show how to compute this mask cor-
rection without revealing A or A−1

(1) we can consider A⊕R from a different view point,
namely as

γy = γi ⊕ γr = γr.(γi−r ⊕ 1) .

(2) Hence, if we multiply γy by γ−r,we get

γy.γ−r = γ−r.γr.(γi−r ⊕ 1) = γi−r ⊕ 1 .

(3) Executing (γi−r ⊕ 1) ⊕ 1, we find γi−r,after which
using log-alog table, we easily compute (γi−r)−1 = γr−i.

(4) Finally, after XOR-ing γr−i with 1 and inverting the
result, we find the mask correction (γr−i ⊕ 1)−1.

A. MixColumn/InvMixcolumn on masked data with log/alog
tables

It is easy to implement the Mixcolumn and InMixColumn
operations on masked data using log/alog tables as well.
Indeed, since one of the terms in each field multiplication
involved in these operation is fixed, the operation is linear.
Let I denotes a denotes a fixed term, then (A ⊕ R).I =
(A.I) ⊕ (R.I). The corresponding mask correction can be
computed trivially as R.I.

Hence, each of the Mixcolumn/InvMixColumn opera-
tions on masked data is reduced to 2× (16× 3)table lookups
using the same log/alog table that were used to compute
inversion.

Fig. 2. Computing inversion on masked data with log/alog tables

VI. Attacks on smart cards implementation

A. Zero Attack

Zero attack is based on the fact that a multiplicative
mask only non-zero values. In other words,if the actual
data byte A is zero, then for any mask X,(A ⊕ X) = 0.
Moreover, multiplicative and simplified masking techniques
had as subtle flaw, namely, they were vulnerable to a zero
attack.

First of all, notice that all manipulations on discrete log-
arithms are fully protected as long as random masks R
change from one run to another. On the other hand, de-
tecting that an intermediate value γi−r is zero provides
some dangerous information. Indeed, γi−r is in fact equiv-
alent to A⊕R−1, where A = (data⊕ key), R−1 is a mask.
γi−r = 0 implies that either A = 0 or R−1 = 0, Hence
an attacker may systematically try all 256 possible values
for datain order to find the oe which turns A into zero.
In order to protect the inversion on masked data from this
situation, we will have to implement log/alog table lookups
in a secure way.

B. Differential Power Attack

Most smart-cards use CMOS technology which consumes
power only when some change occurs in the logic state of
the chip. Also, smart card chips are clock driven. However,
a few processes, such as on chip noise generators, operate
independently of the clock and consume a small, possibly
random amount of power continuously. Each clock edge
triggers a sequence of power consuming events within the
chip which brings it to the next state.

4

The instantaneous power consumption of the chip,
shortly after a clock edge, is a combination of the instan-
taneous power consumption components from each of the
events that have occurred thus far. We assume that the
power consumption function of the chip is the sum of the
power consumption functions of all the events that have
taken place. We will use the term relevant state to subsys-
tems that processor is accessing in that cycle. At the start
of the cycle, the smart card can be in one of several states
depending on the input and processing done in earlier cy-
cles. Let S denote that set of possible relevant states when
control reaches this cycle. Let ε be the space of all possible
events that can occur in that cycle. For each s∈S, and each
e∈ ε, let occurs(e,s) be the binary function which is 1 if e
occurs when the relevant state is s and 0 otherwise. Let
delay(e,s) be the time delay of event e in the state s from
the clock edge and let f(e,t) denote the power consump-
tion impulse function of event e with respect to time t the
power consumption function of the chip in that cycle with
state s and time t after the clock edge can be written as

P (s, t) =
∑

f(e, t− delay(e, s)) ∗ occur(e, s) .

In reality, due to random asynchronous power consum-
ing components in the chip and noise introduced within
itself, the actual power is better modelled by adding noise
components to it

P (s, t) = Nc(t) +
∑

f(e, t− delay(e, s) +

Nd(e, s) + N(e, t)) ∗ occur(e, s) .

Where Ne(e, t) is a (small) Gaussian noise component
associated with the power consumption function of event
e, Nd(e, s) is a small Gaussian noise component affecting
the delay function and Nc is the small Gaussian external
noise component. From power equation show that there is
a strong dependence between the power consumption func-
tion and the relevant state s at that cycle. This is because
different events occur in different states and even if the
same set of events were to occur in two different states, their
timing could be different. This dependence is at the core
of all differential power analysis attacks with seek to ex-
ploit asymmetries in the power consumption function with
respect to state. These asymmetries are particularly pro-
nounced in low end smart cards where the relevant state
space is quite small.

Consider two different probability distributions D1 and
D2 on the relevant state s before the clock edge of a cer-
tain cycle. From power equation, it is very likely that the
distribution of the instantaneous power when the state is
drawn from D2 and these cases can be distinguished by
statistical tests on power samples. This difference and dis-
tinguishability between the two distributions is the basic
for differential power attack. In most well knows attacks,
the distribution D1 and D2 are very simple, e.g.,D1 is the
uniform distribution on the set of all states which have a
particular state bit 1 and D2 is the uniform distribution on

the set of all states which have that bit 0. The difference
in the power distribution for these two cases represents the
effect of that particular state bit on the net power con-
sumption.

C. Timing Attack

Implementations of cryptographic algorithms often per-
form computations in non-constant time, due to perfor-
mance optimizations. If such operations involve secret pa-
rameters, these timing variations can leak some informa-
tion and, provided enough knowledge of the implementa-
tion is at hand, a careful statistical analysis could even lead
to the total recovery of these secret parameters.

Fig. 3. The timing attack principle

For the initialization phase, we build a table for describ-
ing every possible first key byte and N different possible
values of the first plain text byte, if the multiplication ε
will require an additional XOR or not.

This table T with thus have 256×N entries as follows

∀ 0 ≤ i ≤ 255, 0 ≤ j ≤ N, T [i][j] = 1
if the first bit of ByteSub(iXorj) = 1,

otherwise = 0.

Each line i corresponds to a possible value for R1 the
first byte of the round key; each column j corresponds to
a different value of the first plain text byte.

For the measure phase, similarly to the initialization
phase, we build N sets of M messages, where the first byte
of every message from set Si is equal to i; the other bytes
are random. Thus, for every message from subset Si, the
multiplication ε will be exactly the same.

For now, Let encrypting these messages and measuring
the computation times. If M is large enough, we can expect
the mean time for subset Si to reflect the time taken by
the multiplication ε, i.e. to be slightly bigger when that
multiplication is long. We have thus built an oracle that,
with some error probability, determines, for i in [0, N − 1],
if the first bit of ByteSub(i XOR R1), is set.

To determine R1, it suffices to compare the oracle with
the array T : the line that best reflects the oracle’s predic-
tions should correspond to the right value of R1. Other
bytes of the first round key can be recovered in the same
way by turning our attention to the second, third, ..., etc.
bytes of plain text.

Due to Rijndael’s key schedule, once Nk (the key size,
in 32-bit words) consecutive bytes of round key are known,

5

the complete round keys can be generated. We have thus
broken the cipher in the case were the block size is greater
or equal than the key size. If the block size is smaller,
then a little more work is necessary, but the idea is just
the same.

VII. Conclusion

Discrete logarithm is use to be basic to represent GF (2n)
The field operations are effectively reduced to table look
ups and simple operations like shift, XOR and integer arith-
metic. We use log-alog table for the entire round, SubByte
and MixColumn operations in encryption, and their coun-
terparts in decryption process. Data masking techniques
is used to against power analysis attack, e.g., Differential
power attacks. Another attack is zero attack that is elim-
inated at the price of few additional XOR operations and
on-the-fly table re-computations for every run of algorithm.

References

[1] C. S. Charles “An Overview of Smart Card Security,”“http://
home.hkstar.com/alanchan/papers/smartCardSecurity,” 1997.

[2] M. Karpovsky, K. J. Kulikowski, and A. Taubin “Robust Protec-
tion against Fault-Injection Attacks on Smart Cards Implement-
ing the Advanced Encryption Standard,” International Confer-
ence on Dependable Systems and Networks, pp. 93-101, June.
2004.

[3] E. Trichina and L. Korkishko “Secure And Efficient AES Software
Implementation For Smart Cards,”“http://eprint.iacr.org/
2004/149,” 2004

[4] G. Hachez, F. Koeune, and J. J. Quisquater “Timing Attack:
What Can be achieved by a powerful adversary? , Proceedings of
the 20th symposium on Information Theory in the Benelux, pp.
63-70,” 1999.

[5] L. Joachim and T. Markus “Efficient implementation of the AES-
encryption algorithm for Smart-Cards,”“http://www.iaik.tu-
graz.ac.at/teaching/10seminare-projekte/01Telematik Bak-
kalaureat/EfficientAESImplemetation.pdf,” June 2004.

[6] F. Koeune and J. J. Quisquater “A Timing Attack against Rijn-
dael. Technical Report CG-1999/1, June 1999.

[7] E. Thiagarajan and M. Gourishetty “Study of AES and its Effi-
cient Software Implementation,”“http://islab.oregonstate.
edu/koc/ece679/project/2003/thiagarajan-gourishetty.pdf,”
2003.

