JOURNAL OF CRAPTOLOGY, VOL. 1, NO. 1, JUNE 2001

Design of a True Random Number Generator Using
Audio Input

Roger Morrison
Department of Electrical and Computer Engineering,
Oregon State University, Corvallis, Oregon 97331 - USA.
E-mail: morrison@engr.orst.edu

Abstract— Even the strongest cryptography is breakable
if it is easy to guess the key. Therefore, it is critical that
keys generated be highly random and difficult to guess. A
common source for these random bits is sampling an analog
signal generated by a physical noise source. This method
has the potential to provide high quality random bits, but
usually requires specialized analog circuitry be added to the
computer. This paper demonstrates that the common mi-
crophone and audio input found on most home personal
computers also provides cryptography quality random num-
bers.

I. INTRODUCTION

Several cryptographic algorithms have shown they are
secure by resisting attacks for years and surviving the test
of time. Others are even provably secure by relying on
known hard problems such as discrete logarithm or factor-
ing. But the Achilles heal to all these algorithms is that
the key must not be guessable and, in theory, should be as
hard to discover as a truly random number.

When the key is guessable then all of the security is lost.
If an attacker can discover any type of predictability in the
way a cryptography key is generated, it will lower the dif-
ficulty if finding the correct key. The difficulty comes in
generating a random, unpredictable, key using a computer
that is designed to be as predictable and regular as possi-
ble. John Von Neumann saw this problem in 1951 when
he wrote “Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.” [1]

II. SOFTWARE/USER INPUT METHODS

There are several software techniques used to create ran-
dom numbers, but each has weaknesses. Pseudo-random
number generators create random bit strings that are
strong enough to be used in cryptography. However, these
require a random initial seed value, which brings back the
issue of finding a random input source. Another software
technique is to use an input source such as a mouse or key-
board to get random data from the user. This has worked
for years in personal security systems such as PGP. When
the software needs a random seed value it instructs the
user to type random keys or move the mouse. By record-
ing the input values and the times that they occur, fairly
unpredictable seed values are created. This method does
have drawbacks. One problem is that a user may not be
available. A computer server may be located in a locked
basement and does not interface directly with a mouse or
keyboard. A computer server may also be running several

processes, each of which is requesting random inputs. It
could potentially require more input than the user is capa-
ble of, and most certainly more input than the user would
like to perform. This leads to another problem of lax user
input. The user may tire of typing random keys and instead
hits only the space bar or holds the space bar down and
lets the computer repeat key inputs. This more predictable
user input has the potential to lower the randomness of the
seed. [2]

Another option is to create random seed from hard to
predict values found on the computer. These may include
the date and time, process ID files and disk contents. These
values are then combined in a convoluted way to further
increase the appearance of randomness. The problem with
this is two-fold. First, the number generation is based on
semi-predictable data. If an attacker were able to gain
access to the computer that is generating the seed it could
be possible to find out or at least narrow down each of the
values used to create the seed. Secondly, the appearance of
randomness is based on a method of processing data. If the
process is publicly available then the attacker only needs
to guess the input data and enter it into the same process
the software is using to generate the random number. If
the process is secret, then in can be reverse-engineered or
leaked to the public. The process can then be used just as
if it were public. [3]

III. HARDWARE METHODS

To avoid the disadvantages of random numbers gener-
ated by software and user input they could be generated
using a physical process that provides a source of random
noise. This noise is then sampled and recorded as random
bits. For this system to work several characteristics must
be met. The noise must be from a random and unpre-
dictable source. In general, these sources are natural ana-
log processes that are based on fluctuations on an atomic
scale such as thermal, nuclear decay and electromagnetic
noise. These events are based on such a large number vari-
ables it is impractical to predict the outcome. Many times
the Johnson noise (thermal noise), shot noise and flicker
noise that is found in resistors are used. [1] These sources
are sufficiently random and can be designed compactly and
cheaply, but have very small magnitudes, and must be am-
plified before they can be sampled.

This poses two problems. The first is that no amplifier
is perfect, so distortion and bandwidth limitations cause



JOURNAL OF CRAPTOLOGY, VOL. 1, NO. 1, JUNE 2001

discrepancies between the initial pure noise and the ampli-
fied output noise. This is counteracted by using an ampli-
fier with low distortion in a specific bandwidth and filter-
ing out all other frequencies. The amplified noise is sent
through a low pass filter and then sampled at a frequency
slow enough that the high-frequency roll off of the ampli-
fier is not a factor. The second problem is the difficulty in
shielding such a weak signal from the strong digital signals
in its surroundings. Care must be taken that the noise gen-
erators environment is as shielded as possible. This shield
will help keep predictable digital signals from entering the
system all also thwart attackers who may try to introduce a
specific noise into the system to increase predictability. An
additional step of protection is to use a differential noise
from two similar nearby sources such as adjacent resistors.
This will cancel any environmental noises that affect the
sources identically. Once the signal is amplified, it must be
sampled and converted to a usable binary format. Several
of these methods use two clocks signals, one to sample the
noise, and one to sample the data that the noise source
has created. Bucci and Bagini suggest using the first clock
to create a pulse that then triggers the sampling switch[4].
This data is stored in a binary counter. The first clock is
also fed into a counter that creates a slower clock that sam-
ples the binary counter data. By using the binary counter
any bias from the amplifier and comparator can be elimi-
nated.

The Intel random number generator uses a slightly dif-
ferent approach. The frequency of the first clock is actually
a function of the random data. The Johnson thermal noise
of a resistor is fed into an amplifier and then to a volt-
age controlled oscillator. This clock now contains the noise
data. When this clock transitions it triggers a latch that
samples a high frequency clock. This method also elimi-
nates bias from the noise amplifier and voltage controlled
oscillator.

IV. RANDOMNESS

Using two clocks to eliminate noise sampling bias is not
without drawbacks. The entropy of the noise signal does
not increase and the bias is actually converted into corre-
lation. [5] This can be more easily understood by looking
at an extreme example. In the case of the first generator,
assume that the signal coming out of the comparator is all
1s. This bias has taken all of the entropy out of the signal.
The output of the generator may not be biased because it
is coming out of the binary counter. Nevertheless, it will be
strongly correlated because the binary counter and the sec-
ond sampling clock will perform in a predictable manner.
The binary counter will increment every clock cycle and
the second clock will sample it at a regular synchronous
frequency. This will produce all Os, all 1s or alternating
1s and Os. The same idea holds true for the second ran-
dom number generator, the entropy of the output can be
no greater than the entropy of the sampled noise. In fact,
entropy is further decreased by any bias in the second high
frequency clock. There are methods, however, to concen-
trate the entropy of a signal by trading the entropy of the

output bits with the output bit-rate.

One method used by Intel [1] is the Von Neumann correc-
tor. This method takes pairs of bits as inputs and converts
then into output bits using the table below:

Input Bits | Output Bit
0,0 nothing
0,1 1
1.0 0
1,1 nothing

Table 1: Von Neumann corrector

Output bits only occur when there is a transition in the
input bit stream. Because transitions in each direction oc-
cur an equal number of times in a bit stream the bias is
eliminated. In this case the bias is not converted into cor-
relation, but instead results in a lower bit rate. The greater
the bias the more often 0,0 or 1,1 states occur which re-
sults in no output and thus a lower bit rate. In fact, the
Von Neumann corrector reduced the average bit-rate of an
unbiased signal by a factor of 6. In addition, the output
now has a variable bit rate, instead of the constant bit-rate
of the input.

This corrector also illustrates that correlation can be
converted to bias. If the bits being used as an input to
the Von Neumann corrector are correlated the output will
also be correlated and/or biased. Again, taking the ex-
treme example by assuming the input is alternating Os and
1s. The input is unbiased, but the output will be all Os or
all 1s depending on when the corrector begins to read the
input data.

V. ANALOG TO DiGITAL CONVERTER CHAOS

An obstacle to extracting the entropy from weak analog
signals is filtering out digital signal interference. This must
be done to stop the deterministic signals from introducing
predictability into the output. A different method is to
sample the signals at a high resolution such that minuet,
unpredictable fluctuations are the source of entropy. It is
analogous to measuring the temperature of room temper-
ature air with a thermometer that is accurate to 1/1000th
of a degree, and trying to predict the least significant digit.
The most significant digits would be easily guessed, es-
pecially if the air was being controlled with a thermal
source, but the digits of higher precision are a function
of so many elements that the digits becomes chaotic and
unpredictable. The least significant bits (LSBs) of high-
resolution A/Ds also tend to produce independent bits[4].
This is true even when an outside source attempts to con-
trol or interfere with the sampled signal. The key is that
the A/D is able to extract characteristics of a signal that
are too small to be accurately controlled or predicted. The
analog noise source no longer requires protection from de-
terministic signals because the predictable part of the in-
terference is not being sampled.



JOURNAL OF CRAPTOLOGY, VOL. 1, NO. 1, JUNE 2001

VI. Aubpio INPUT SAMPLING

Two A/Ds common in the personal computer are the au-
dio input and the mouse. The mouse, as we found before,
is not a satisfactory source because it requires user input.
The microphone, on the other hand, is bombarded con-
stantly with analog signals from the surroundings. Move-
ments create sound waves that prorogate through the air
and reflect off objects, which makes the amplitude at mi-
crophone more unpredictable.

The analog sound is converted to voltage by the micro-
phone and then into data bits by and audio A/D converter.
At high sampling rates, audio signal data samples have
high correlation properties. These are expected because the
sampled sound is a continuous and sometimes slow chang-
ing analog signal. The graphic below shows how nearby
samples can have similar values. This is a side effect of the
A/D having limited precision and having to group ampli-
tudes of similar strength into the same digital value.

To overcome this, the samples are added and the sum is
sampled at a large period. This way the entropy of every
sample is contributing to the output bits. The tradeoff is
that as the sampling period is increased the bitrate at the
output decreases.

Also notice that the entropy of the LSBs is greatest and
diminishes as the bits become less precise all the way up to
the most significant bits (MSBs). This would mean only
the LSB of the sampled signals are useful to extract the
maximum amount of entropy, and all of other bits are sim-
ply wasted. However, there is a method to use entropy of
the entire sample. The XOR function has the property of
adding the entropy of uncorrelated bits. The samples from
the A/D are correlated from sample to sample, but not
bitwise from MSB to LSB. If an analog signal is sampled
at random over the full range of the A/Ds input then the
bits should have no correlation between them. In addition,
if the signal is not evenly distributed over the input range
then the MSB bits, which will be biased toward zero, will
not detract from the entropy. To better understand this
concept think of an example using decimal digits. If a ran-
dom number is added to zeros, it retains its randomness.

An added benefit to XORing the bits of the sampled sig-
nal is that bias is reduced. If the LSB is the only source for
the output bits then it is subject to any bias of the A/D
toward 1 or 0. By XORing the entire string of bits the
bias is shifted to the number of 1s in the sample is even
or odd. Tests performed on sample audio inputs showed
heavy bias. For large samples of data bias was 48.2 % 1s.
By XORing the entire sample the bias was virtually elimi-
nated. It should be pointed out that the XORing function
does not increase entropy by reducing the bias. The XOR-
ing of the bits only adds the entropy of the uncorrelated
bits. If the bits were correlated then the bias would prop-
agate. For example, if the two of the bits tended to be the
same, then XORing the bits results in a zero bias.

50.5
50
49.5
49
48.5
48
47.5

LSB Bias XORed

Bias
Figure 1: Bias

The final output data is determined by combining the
large sampling period and XORing techniques. Each time
the A/D samples the audio the bits are XORed across MSB
to LSB and then added to a counter. Because the counter
is only one bit wide, the addition is also a simple XOR
function. This counter is sampled at a period of N, where
N is a fixed number of A/D samples. This data is put into
a buffer as a random bit string.

IN

Sampling
2
Counter

Clock

A
Analog AD

NN
: ~onverte )
Audio —pf Converter Counter
Input ‘

Figure 1: Sampling

Sampling

| Switch > Output

The noise level at the microphone, the A/D sampling
rate, and the value of N were all varied to determine there
impact on the final bit stream. The noise level variations
consisted of:

o quiet environment that effected no more than 2 of the
LSB at any time

e noisy radio playing in the background but not causing
the A/D to clip (exceed the range of the A/D)

« loud environment that did cause significant A /D clipping
¢ 10kHz interference tone projected directly into the mi-
crophone.

o 11.025kHz interference tone generated synchronously us-
ing the sound inputs sampling clock

« normal office environment with over half of the A/D bits
are effected more than 10% of the time (this occurs at de-
fault microphone settings)

The sampling rate of the A/D was tested 11.025 and
44.100 KHz and the N value was set at 1, 10 and 100 sam-
ples.

Although randomness can never be proven, several test
suits can be used to test correlation and bias. After at
least 1 megabit of data was collected for each setting the
samples were passed through the following tests:

« Block means Spectral analyses

+ Random walk test

o Block mean correlations, 1-129

o Overall mean

o Column means

o Spectral analyses; hi, medium and low smoothing
o Run length variances

o FIPS 140-1 test suite



JOURNAL OF CRAPTOLOGY, VOL. 1, NO. 1, JUNE 2001

Failures occurred whenever N was set to 1 and when N
was set to 10 and the environment was very quiet or so
loud that clipping occurred at the A/D. This is reasonable
because the sampling rates were set high and the input sig-
nals were intentionally robbed of entropy. The microphone
and A/D was not able to gather enough entropy from the
signal during this short time period nearby samples became
correlated. For all other settings, the output bits passed
all of the statistical tests for randomness. Even when the
test was intentionally sabotaged by forcing a single fixed
frequency into the microphone, no significant correlations
or biases were found when N was greater than 10.

As an added precaution a preliminary test should be per-
formed on the microphone. The samples should fluctuate
enough to effect more than half of the bits a significant
part of the sampling time. Care is also needed to ensure
the input signal is never clipped by the A /D. Either of these
situations have the potential to cause a loss is entropy. For
added security, N should be 10 or above. This provides
a bitrate of 4.41 Kbit/sec when the sampling rate is 44.1
KHz, which is enough for most cryptographic applications.

VII. CONCLUSION

Cryptographys desire for random numbers, and the in-
adequacies of software and user input methods, has cre-
ated a need for inexpensive and widely available method
of generating random bits with hardware. The common
microphone and audio input found on person computers
provides a means for sampling an analog audio signal with
random properties. Sampling techniques further concen-
trate the entropy of these samples resulting in an output
bit stream that consistently passes tests for randomness.
Using this method the home computer user can generate
cryptographically secure random bits without any special-
ized hardware.

REFERENCES

[1] P. Kocher B. Jun, “The intel random number generator,” Tech.
Rep., Cryptography Research, Inc. White Paper Prepared for In-
tel Corporation, 1999.

[2] RSA, “Hardware-based random number generation,” Tech. Rep.,
An RSA Data Security White Paper, 1999.

[3] David Wagner Ian Goldberg, “Randomness in the netscape
browser,” Dr. Dobb’s Journal, January 1996.

[4] Marco Bucci Vittorio Bagini, “A design of reliable true random
number generator for cryptographic applications,” Cryptographic
Hardware and Embedded Systems, vol. 1717, pp. 204218, August
1999.

[5] Robert J. Rance David P. Maher, “Random number genera-
tors founded on signal and information therory,” Cryptographic
Hardware and Embedded Systems, vol. 1717, pp. 219-230, August
1999.



