
1

New Generation Cryptosystems using Elliptic
Curve Cryptography

Sharat Narayan

Abstract— Elliptic Curve Cyrptography is emerging as an at-
tractive public key cryptosystem for mobile/wireless environment.
This is mostly due to the small key sizes associated with Ellip-
tic Curve Cryptograhic systems. This project presents the differ-
ent uses of Elliptic curve cryptography in New Generation Cryp-
tosystems - the internet and in mobile computing. Different hard-
ware and software implementations suited for this purpose are dis-
cussed. The OpenSSL implementation of ECC is also discussed in
this project.

INTRODUCTION

Since its proposal by Victor Miller and Neal Kolbitz in the
mid 1980s, Elliptic Curve Cryptography (ECC) has evolved
into a mature public-key cryptosystem. Extensive research has
been done on the underlying math, its security strength and ef-
ficient implementations.

Small key sizes and computational efficiency of both public
and private key operations make ECC not only applicable for
hosts running on powerful machines but also to small wireless
devices such as PDA’s and cell phones. To make ECC com-
mercially viable, ECC protocols need to be standardized and
integrated seamlessly into the security layers like SSL.

This paper is structured as follows: Section 1 gives an
overview of ECC and the existing protocols like ECDH and
ECDSA. Section 2 discusses the integration of ECC into SSL
and the performance improvement gained over other public key
cryptosystems is analysed. Section 3 gives the architecture of
an ECC harware accelerator and the implemented algorithms.

I. ECC OVERVIEW

Every public key cryptosystem is based on some hard to
solve mathematical property. By hard to solve we mean that
even on the fastest of computers available today it is infeasible
in terms of money and computational time to solve the prob-
lem. The popular RSA and Deffie-Hellman are based on the
hardness of integer factorization ad Discrete Logarithm Prob-
lem. Unlike these cryptosystems Elliptic Curve Cryptography
operates on points on a Elliptic Curve. The basic operation in
ECC is the point multiplication i.e. multiplication of an elliptic
curve point P by an integer e, which we will denote by ����� . It
is equivalent to adding P to itself e times, which yields another
point on the curve.

Similar to the Discrete Logarithm Problem we have the El-
liptic Curve Discrete Lograthm which is finding K for a curve
such that �������
	 given P and Q. This is possible by the
brute force approach which is to compute all multiples of Q un-
til P is found. In real cryptographic systems where the key size

is large follwoing the brute force approach to solve the Elliptic
curve discrete logarithm problem is infeasible.

The Security of the Elliptic curve cryptography relies on the
hardness of solving the elliptic curve discrete logarithm prob-
lem. Not every elliptic curve offers strong security properties
and for some curves the elliptic curve discrete logarithm prob-
lem may be solved efficiently. Since poor choice of the curve
can compromise security, standard organizations like NIST and
SECG have published a set of recommended curves.

The Elliptic Curve Diffie-Hellman (ECDH) and Elliptic
Curve Digital Signature Algorithm (ECDSA) are the elliptic
curve counterparts Diffie-Hellman and DSA. In ECC we have
one more important aspect, the base point � . This base point� is fixed for each curve. In ECC this base point is used to cal-
culate the public key. A random integer k is chosen and is kept
private and forms the secret key. The result of the multiplication	������� forms the public key of the cryptosystem.

A. Elliptic Curve Diffie-Hellman (ECDH)

This protocol establishes a shared key between two parties.
The original Diffie-Hellman algorithm is based on multiplica-
tive group modulo � , while the ECDH protocol is based on the
additive elliptic curve group. We assume that the underlying
field �������� or ���������� is selected and the curve � with pa-
rameters ���! and the base point � is set up. The order of the
base point � is equal to " . The standards often suggest that
we select an elliptic curve with prime order, and therefore, any
element of the group would be selected and their order will be
the prime number n. At the end of the protocol the communi-
cating parties end up with the same value # which is point on
the curve. A part of this value can be used as a secret key to a
secret-key encryption algorithm.

Qs
Send

Qu

K = Ds X Qu = DsDu X P

Receive

Qs = Ds X P

Choose Ds

SERVER

K = Du X Qs = DuDs X P

Receive

Send

Qu = Du X P

Choose Du

USER

Fig. 1. ECDH

B. Elliptic Curve Digital Signature Algorithm (ECDSA)

First, an elliptic curve � defined over ����$��� or ����%�&���
with large group of order " and a point � of large order is se-
lected and made public to all users. Then, the following key

2

generation primitive is used by each party to generate the indi-
vidual public and private key pairs. Furthermore, for each trans-
action the signature and verifiction primitives are used. ECDSA
is briefly outlined below,
ECDSA Key Generation - The user � follows these steps:

1. Select a random integer ����� � � "�� �	� .
2. Compute 	 � � ��� .
3. The public and private keys are �%� � � � " � 	 � and � .

ECDSA Signature Generation - The user A signs the message
 using these steps
1. Select a random integer � ��� � � "�� ��� .
2. Compute ���� � ���������� � �&"���� � ��
�� ��" .
if ���� ����%����� , �� is represented as a binary number.
if � ��� then go to Step 1.
3. Compute ������
�� � "
4. Compute � ������� �! �
 ��"#�����
$� � " .
Here H is the secure hash algorithm SHA
If s = 0 go to step 1.
5. The Signature for the message m is (r, s)

ECDSA Signature Verification-The User B Verfies A’s Signa-
ture �%� �&� � on the message
 by applying the following steps:

1. Compute ' � � ����
�� � " and H(m)
2. Compute ()� � �
 �*'
$� � " and (� � ��'
$� � "
3. Compute ()� ��� "+(� � 	 � �! � ��� � � and , � �-
�� ��" .
4. Accept the signature if , � �

II. SSL OPERATION

A. Overview

Secure Socket Layer (SSL) is the most widely used and de-
ployed security protocol on the internet today. Currently it is
supported as HTTPS. It is now trusted to secure virtually all
sensitive web-based applications ranging from online banking
and stock trading to e-commerce.

SSL offers encryption, source authentication and integrity of
data that is transmitted over an insecure channel. It operates
over a reliable protocol like TCP. It is very flexible in the sense
that it can accomodate diffrent cryptographic algorithms for key
agreement, encryption and hashing. However, the specifica-
tions does recommend particular combinations of these algo-
rithms called '/. ��0 � �1���2(3.54 � � . For example a cipher-suite such
as RSA-RC4-MD5 would indicate that RSA will be used for
key exchange mechanism. RC4 for bulk-encryption and MD5
for hashing.

There are 2 main components in a SSL, the Handshake pro-
tocol and the Record Layer Protocol. The Handshake protocol
is used by the client and the server to agree on a common ci-
pher suite, authenticate each other and establish a shared mas-
ter key using public key cryptographic algorithms. The Record
Layer Protocol then derives symmetric keys from the master
key which are then used for bulk encryption and authentication
of source data.

Public-key cryptographic operations are the most computa-
tionally expensive portion of SSL processing. SSL allows the
re-use of a previoulsy established master secret resulting in
an abbreviated handshake that does not involve any public-key
cryptography, and requires fewer and shorter messages. How-
ever, a client and server must perform a full handshake on their
first interaction.

B. RSA Based Handshake

Figure1: RSA−based SSL Handshake

(Initial prposal)

Application DataApplication Data

Finished

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

CertificateVerify

ClientKeyExchange

Certificate

ServerHelloDone

Certificate Request
ServerKeyExchange

Certificate

(Ciphersuite negotiate)Server Hello

Client Hello

ServerClient

Fig. 2. RSA based SSL Handshake

As of today the mostly commonly used public-key cryptosys-
tem for key establishment is RSA. Figure 1 shows the operation
of an RSA-based SSL handshake.

The client and the server exchange random nonces ini-
tially and negotiate a cipher suite with 687%. � "�49 � 7�7 � and: � ��, � �	 � 7�7 � messages. The server then sends its signed
RSA public key either in the

: � ��, � �-6 � �	45.9;3.9' �<4 � message or
the

: � ��, � � # � � �=>'?0 �&"�@ � message. The client after veri-
fying the public key generates a random 48 - byte number,
encrypts it with the server’s public key, and sends it in the
687%. � "�4 # � � �=>'?0 �&"�@ � message. The server decrypts to mes-
sage to get the pre-master key. Both the end-points then use pre-
master secret which, along with previously exchanged nonces,
is used to derive the symmetric keys. The server has the option
of doing client authentication.

In a RSA Handshake without client authentication, the client
performs two RSA public-key operations - one to verify the
server’s certificate and another to encrypt the premaster secret
with the server’s public key. The server does one public key
operation to decrypt the premaster secret key sent by the client.

C. ECC Based Handshake

The ECC based handshake is very similar to RSA handshake.
Only the handshake protocol is affected by incorporating ECC
in SSL. The same messages as shown in figure 2 are exchanged
between the client and the server. Only the third message,: � ��, � � # � � �=>'?0 �&"�@ � is absent in the ECC based handshake.

Through the first 2 message the client and server agree on the
ECC based cipher-suite. In this case the

: � , � �	6 � �	45.*;3.9' �<4 �
contains the ECDH public key signed by a certificate au-
thority using ECDSA. The client after validating the ECDSA
signature conveys its ECDH public key to server in the
687%. � "�4 # � � �=>'?0 �&"�@ � message. The two entities now perform
the ECDH opertaions using its own private key and others’ pub-
lic key. At the end of the ECDH operation they get the master

3

secret and symmetric key. Client authentication is optional in
this protocol also.

In a ECC handshake without client authentication, the client
performs ECDSA verification to verify the server’s certificate.
It also does one ECDH operation using its private key and
server’s public key to obtain the premaster key. The server
needs to perform only ECDH operation to arrive at the same
secret.

D. Performance comparison between ECC based Handshake
and RSA based handshake

The RSA Based Handshake is the most widely used public-
key cryptosystem in SSL and has been in use for quite some
time. The ECC based handshake was introduced very recently
into the SSL. This was mainly made possible by the crypto-
graphic research group at Sun Microsystems Ltd. Viupl Gupta
and et al [5]. Their paper presents an estimate of performance
improvements that can be expected in SSL through the use of
ECC.

The research group at Sun Microsystems conducted their ex-
periment on an Ultra-80 platform(A Sun server equipped with
450 MHz UltraSparc II processor) and Yopy (A Linux PDA
equipped with 200 MHz StrongARM processor).

The following cases were considered to compare RSA (1024-
bits) and ECDH-ECDSA (163-bits) handshakes.

Case 1: A Yopy to another Yopy
Case 2: A Yopy client talking to an Ultra80 server
Case 3: An Ultra80 talking to another Ultra80

Given below are the results obtained from the experiment.

Fig. 3. Case I , CaseII and CaseIII - Without Client Authentication

From the graphs we observe that in case 2 and case 3, ECC
handshake protocol has significantly low latency when com-
pared to RSA handshake, incidently this happens when both the
client and the server are run on the same platform. When the
client and the server run on different platforms RSA handshake
performs better. To verify the earlier results these experiments
were repeated using higher key sizes. 2048-bit RSA was com-
pared with 193-bit ECC. The ECC was found to perform as
expected, even in Case 2. The results are shown in the graph
below.

These results indicate that the performance advantage of
ECC over RSA increases at higher key sizes.

Fig. 4. Case II with higher key size - Without Client Authentication

III. ECC HARDWARE ACCELERATION

Until this point we have discussed the different ECC
(ECDSA, ECDH) operations in existence and their integration
into the widely publicized security layer, the SSL. We have also
seen the performance enhancements that can be achieved when
ECC is used. The performance efficiency of ECC enables it to
be incorporated into clients that range from mobile devices like
PDA and cell phones to high end clients like PC’s. The aggrega-
tion of clients initiated connection leads to high computational
demand on the server side, which is best handled by hardware
solution. While the client needs are limited as they can be opti-
mized for a particular curve, the server-side hardware needs to
be able to operate on numerous curves. The reason for this is
that clients may choose different key sizes and curves depend-
ing on its preference and the server is expected to support most
of the clients.

In order to accelerate the ECC related computations on a web
server, Sun Microsystems came up with a cryptographic hard-
ware accelerator for elliptic curve. The complete ECC-enabled
Hardware/Software stack is shown below.

WEB SERVER

PCI BUS

CRYPTO ACCELERATOR

SOLARIS DRIVER

ECC CRYPTO LIBRARY

ECC−ENABLED SSL

Fig. 5. ECC Hardware/Software stack

A. Architecture of the accelerator

The accelerator was designed such that it could do finite
field arithmetic for �������� � � " � � ����� on arbitrary irreducible

4

polynomials. It had microprogrammable architecture where the
instructions could be overlapped there by enabling parallel in-
struction execution. It had bus-based data path. The design
of the hardware was driven by the need to both provide high
performance for named elliptic curves and support point multi-
plications for arbitrary, less frequently used curves.

The block diagram of the accelerator is as shown in figure 6.

Fig. 6. Accelerator Architecture

The functional units include a modular divider (DIV), a mod-
ular multiplier (MUL) and a multifunctional arithmetic and
logic uint (ALU). The ALU provides addition, modular squar-
ing, shift and comparison functions.

1) Instruction Set: The ECC processor implements a load-
store architecture, that is, only load and store instructions can
access memory. All other operations use register. The instruc-
tions fall into three categories: Memory instructions, arithmetic
instructions and control instructions. All instructions are of
fixed length, 16 bits.

2) Control Unit: The control unit consists of the instruc-
tion memory IMEM that has a capacity of 1kByte or 512 in-
structions and a finite state machine that controls the data path
according to the instructions fetched.

Program execution times are further optimized by overlap-
ping instruction execution and executing instructions in paral-
lel. In case of a data dependencies, the assembler detects them
and prompts the programmer to remove the dependencies. The
assembler will not correct these dependencies and considers
them as errors. Some dependencies that cannot be eliminated
are handled by using NOP instruction.

Parallel execution of instructions is implemented in that an
ADD and SQR instruction can be executed in parallel to MUL
instruction if there are no data dependencies.

3) Multiplier Unit: The multiplier unit is a digital serial
modular multiplier. The design is based on the algorithms de-
scribed by Song and Parhi. The design is also based on most
significant digit multiplier. It was found that by using most
significant digit multiplier design pipelining can be done more
efficiently.

The multiplier was optimized to do hard-wired reduction for
������ ����� � � ������ ����� � and ����%� � ��� � .

B. Point Multiplication Algorithm

For point multiplication the algorithm used is the Mont-
gomery Scalar Multiplication using projective coordinate as
proposed by Lopez and Dahab. This choice of algorithm was

motivated by the fact that the processor can perform multipli-
cations faster than divisions.

The Montgomery Scalar Multiplication is done as a projec-
tive triple.Montgomerry’s algorithm exploits the fact that for
a fixed point ��� � � �	� ��� � and points � � � � � ���	� ����
 � �
and � � � � � � �	� � ��
 � � the sum � � " � � can be expressed
through only the X and Z co-ordinates of � � � � and � � .

The assembly code for Point multiplication is shown below
[1]:

#Register and values:R0 -> X1, R1 -> Z1,
R2 -> X2, R3 -> Z3

MUL(R1,R2,R2)
SQR(R1,R1)
MUL(R0,R3,R4)
SQR(R0,R0)
ADD(R2,R4,R3)
MUL(R2,R4,R2)
SQR(R1,R4)
MUL(R0,R1,R1)
SQR(R3,R3)
LD(data_mem_b,R5)
MUL(R4,R5,R4)
SQR(R0,R0)
LD(data_mem_Px,R5)
MUL(R3,R5,R5)
ADD(R$,R0,R0)
ADD(R2,R5,R2)

The code is created by considering if it is possible to overlap
the instructions. It is also seen that there are no data dependen-
cies for any MUL/SQR or MUL/ADD instruction sequences.
Hence, all MUL/SQR and MUL/ADD sequences can be exe-
cuted in parallel.

C. Performance analysis

In order to analyze the performance of the ECC accelera-
tor over software implementations a hardware was specified in
Verilog and prototyped in a Xilinx Virtex XCV2000E-FG680-7
FPGA. The prototype runs off the PCI clock at a frequency of
66.4 MHz.The results of the experimente is as shown in figure7
[1].

Fig. 7. Hardware and Software performance

It can be seen from the simulation results that the speedup
due to hardware support is enormous for named curves. For

5

the ECC-163 named curve the hardware accelerator offers 21.7
fold improvement. When generic curves are used the speedup
is not enormous but still it is possible to achieve approximately
a 2-fold speedup.

IV. CONCLUSION

The project gave an overview of ECC and two network se-
curity protocols. These protocols are used to establish a shared
secret key between two parties (ECDH) and to sign a document
and then verify the signature (ECDSA). We also saw how ECC
can be integrated into the SSL and the performance improve-
ment that can be achieved by doing so.

The hardware support to ECC is also very essential as in the
case of web servers that support ECC and we saw the architec-
ture of an ECC accelerator. One of the enhancement that can
be made to the accelerator is to improve the execution speed of
the control instructions. The the contorl flow instructions like
BMZ, BEQ, SL, JMP and END consume almost 21 percent of
the execution speed [1]. Latency due to these control flow in-
structions can be reduced by using techniques like Branch pre-
diction. More instruction level parallelism and loop level paral-
lelism can be introduced into the processor by redesigning the
execution stages of an instruction.Several techniques like loop
unrolling and software pipelining can be used.

Handling data dependencies is one other area that needs to
be looked at, currently the assembler signals an error when data
dependencies are found. Smart assemblers can be built such
that they analyzes the code and eliminate dependencies in the
code. The assembler is also responsible for scheduling the in-
structions in such a manner that maximum instruction level par-
allelism is achieved. Such an assembler gives flexibility to the
programmer and the programmer can try out new algorithms
without concerning himself with execution details.

REFERENCES

[1] HansEberle, Nils Gura, Sheueling Chang-Shantz - Sun Microsytems. “A
Cryptographic Processor for Arbitrary Elliptic Curves over ���������
	 ,” .

[2] M.Aydos, E. Savas and C.K.Koc. “Implementating Network Security Pro-
tocols based on Elliptic Curve Cryptography”

[3] M.Aydos, T Yanik and C.K.Koc, “An High-Speed ECC based Wireless
Authentication Protcol on an ARM Processor,”

[4] M.Aydos, B. Sunar and C.K.Koc. “An Elliptic Curve Cryptography based
Authentication and key Agreement Protocol for Wireless Communica-
tion,”

[5] Vipul Gupta, Sumit Gupta, Sheueling Chang, ”Performance Analysis of
Elliptic Curve Cryptography for SSL”.

[6] Vipul Gupta, Sumit Gupta, Hans Eberle,et al. ”An End-to-End Systems
Approach to Elliptic Curve Cryptography”.

