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Automatic Generation of Polynomial-Basis
Multipliers in GF (2n) using Recursive VHDL

J. Nelson, G. Lai, A. Tenca

Abstract— Multiplication in GF (2n) is very commonly used in
the fields of cryptography and error correcting codes. Automating
the design process for these multipliers could reduce the cost
and development time of hardware implementations. In this
project, we present a general design for these multipliers and
a strategy to generate them automatically given the precision
of the operands and the irreducible polynomial which defines
the field. In particular, the generation and use of tree structures
based on a previously proposed recursive VHDL technique is
compared with other Galios Field multipliers. It is shown that
the final result of this automatic design tool is very competitive
with some specialized designs presented in the literature, with
the advantage that it can be adjusted to any type of trinomial
or pentanomial in the IEEE standard.

Index Terms— recursive VHDL, GF (2n) multiplication, auto-
matic generation, cryptography, reconfigurable.

I. I NTRODUCTION

M ULTIPLICATION in binary extension fields, or Galois
FieldsGF (2n), is a very important operation in several

numerical algorithms used in cryptographic applications and
error-correcting codes [1]. The field is defined based on an
irreducible polynomialp(x) and as a result, the multipliers
have a structure that depends on this polynomial [2]. Poly-
nomials with fewer coefficients have less complexity, and
for this reason the most common irreducible polynomials are
trinomials and pentanomials (3 and 5 coefficients respectively).
The IEEE standard shows a huge list of such polynomials
[3]. Most of the work presented in the literature estimates
the complexity of multipliers inGF (2n) [4], [5], [6], [7]
and usually proposes design alternatives to optimize them.
However, the actual design process, even with these design
guidelines, is always a complex and tedious task. In this
work we present an HDL (hardware description language)
description for multipliers inGF (2n) that use polynomial
basis. This description allows the generation of multipliers for
any field size (within the limits of the synthesis tool) and
for any trinomial or pentanomial. However, the basic concept
is general and could be used for any type of irreducible
polynomial. As in other multipliers, the fast addition of
partial products is the most important factor in determining
performance. The use of tree structures is the fastest way to
perform this task. However, a parameterizable description of
tree structures using VHDL can only be obtained when using
recursive calls. The use of recursive VHDL is briefly explained
in Section IV. The benefits of using an automatic generator
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of multipliers are flexibility and speed. From the information
about the field size and possibly the irreducible polynomial,
the multiplier is generated with minimal user intervention. This
approach significantly reduces the cost of getting a working
and efficient design solution. We initially present an overview
of multiplication in GF (2n) and show the general design
approach to be used in this work. A brief description of
recursive VHDL is also shown. Some experimental results are
presented and compared against published results. We initially
imagined that the circuit would be inefficient, but the results
show that the synthesized design is very competitive with
optimized multiplier designs. These results are shown in later
sections.

II. POLYNOMIAL BASIS MULTIPLICATION IN GF (2n)

For our design we chose to use the standard or polynomial
basis to represents elements inGF (2n). When using poly-
nomial basis, each element of the field is represented by a
polynomial of the forma(x) = an−1x

n−1 + an−2x
n−2... +

a2x
2 + a1x + a0 whose coefficients are always 1 or 0. To

create a proper field an irreducible polynomialp(x) of degree
n must be chosen to define that field. All operations within
the field are then performed modulo the polynomialp(x).

Addition and subtraction, when using polynomial basis, is a
simple XOR of the corresponding coefficients. Multiplication
on the other hand is a very complicated procedure requiring
the result to be reduced byp(x) as shown in (1).

c(x) = a(x)b(x) mod p(x) (1)

This reduction can be performed by subtractingp(x)xi for
each coefficienti whose degree is greater thann − 1. If we
view the multiplication as shown in (2) then it is possible to
reduce each partial product seperately as shown in (3).

(a(x)bn−1x
n−1 + · · ·+ a(x)xb1 + a(x)b0) mod p(x) (2)

c(x) =
n−1∑

i=0

a(x)bix
i mod p(x) (3)

In fact, the reduction can be further simplified by using each
reduced partial product as the base for the next partial product.
We can produce any partial productz(x)i as

z(x)i = z(x)i−1x + p(x)zn−1 (4)

wherezn−1 is the MSB ofz(x)i−1 and z(x)0 = a(x). Each
z(x)i is then ANDed withbi to select the actual partial prod-
ucts. This allows us to perform the reduction while calculating
each partial product by addingp(x)zn−1 at each iteration.
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Fig. 1. Block Diagram of recursive implementation. Note that the result of
each partial product module is fed into the next.

It is also possible to view the polynomial basis mul-
tiplication as the multiplication of a binary matrix and a
binary vector as presented in [2]. Each column of the binary
matrix contain one partial producta(x)xi. The binary vector
contains the coefficients ofb(x). It is then possible to create
a reduction matrixQ based onp(x). It has been shown that
the logic required to add in the reduction matrixQ can be
greatly simplified for most polynomials [4], [5], [6]. For all
polynomials presented in [3] theQ matrix will be very sparse.
This leads to a faster and smaller implementation.

III. M ULTIPLIER DESIGN APPROACH

The multiplier we present in this paper is a Galois Field
multiplier that operates on field elements defined using poly-
nomial basis. The irreducible polynomialp(x) can be pre-
specified for each desired multiplier design or one will be
automatically chosen from [3] based on the operand size.

Rather than describing the matrix presented in [2] our HDL
describes a structure with two main parts. The first is the
the partial product generation stage and the second combines
the resulting partial products. The combination of the partial
products is performed by the recursive XOR trees described
in Section IV.

Individual partial products are computed by left-shifting the
previous partial product by one bit and checking the most-
significant bit (MSB) of the result. If this bit is equal to 0, then
the current partial product has not exceeded the degree of the
field. If it is equal to 1, then it has exceeded the degree of field
and must be reduced byp(x). The reduction is accomplished
by a bitwise XOR of the shifted partial product andp(x). This
way, the partial product computed in any iteration can always
be represented in ann-bit vector. The computed partial product
is passed on to the next iteration and this process continues
until all partial products have been generated.

As shown in Figure 1, each dotted block represents one
iteration step. In each block, the current partial product is left-
shifted and its MSB is used to determine whether the partial
product will be reduced byp(x). The resulting partial product
is then used in the next iteration step. Then, effective partial
products are selected by AND operations of the partial product
at block i with c(x)i. To obtain the result, a bitwise-XOR of

all the effective partial products is accomplished by means of
an XOR tree.

IV. RECURSIVEVHDL D ESCRIPTION OFTREES

Several efficient hardware circuits are constructed using
trees. Describing these trees using non-recursive constructs can
be very difficult. By using recursive VHDL [8], we found a
compact and regular way to describe these trees. The following
code is the architecture body of the entity called tree1:

BEGIN // beginning of architecture body
degenerated tree: IF d = 0 GENERATE

output <= input(0);
END GENERATE degenerated tree;
single gate: IF d = 1 GENERATE

xor gate root: xor n
GENERIC MAP(n => n)
PORT MAP(a => input, z => output);

END GENERATE single gate;
compound tree: IF d > 1 GENERATE

the gate: xor n GENERIC MAP(n => n)
PORT MAP(a => xor input,

z => output);
subtree array: FOR i IN 0 TO n− 1
GENERATE

the subtree: tree1
GENERIC MAP(d => d-1, n => n)
PORT MAP(input => input(i * n** (d-1)

to (i+1) * n** (d-1)-1),
output => xor input(i));

END GENERATE subtree array;
END GENERATE compoundtree;

END; // end of architecture body

where xorn is an n-input XOR gate component. The variable
d corresponds to the tree level, and depending on the level
different instantiations are made. Whend = 0 the tree is a
single wire (degenerated tree). Whend = 1 the level consists
of a single XOR gate (the base of the tree). When thed > 1,
one XOR gate is used, and each gate input is connected
to one new tree. That is when the same component tree1
is invoked again. This VHDL code is extremely simple and
flexible enough to generate trees of different sizes. It allows
the control of the fan-in of the XOR gate and the number
of tree levels. Once a tree is used to assimilate several bits
from the partial products, there will most frequently be unused
inputs. It is expected that the synthesis tool will prune unused
logic from the tree generated from the recursive description.
Given the sparse nature of the large penta- or trinomial, the
synthesis tool is able to remove a large number of XOR gates
that have all the inputs as zero, or only one variable with all
the remaining inputs as zeros.

V. I NITIAL SYNTHESIS RESULTS

To determine the characteristics of the proposed multiplier
design, it was synthesized using several different operand
sizes. For each run, one of the irreducible polynomials sup-
plied in [3] were used. These polynomials included both
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trinomials and pentanomials. The synthesis was performed
using the Leonardo and the HEP ADK with its AMI-05 CMOS
libraries.

As explained before, we expected to have the synthesis tool
prune unused XOR gates from the tree. However, we did not
expect that the synthesis tool would break the connections
between partial product generators and make the final bit-
slices largely independent. In doing this, the synthesis tool
undoubtedly improved the delay of the final circuit.

Table I contains results from synthesis runs at 4, 8, 16,
32, 64, and 128 bits. We had attempted to synthesize larger
versions but the system requirements exceeded the available
resources. Ideally, we would like to determine the behavior of
the recursive design at 512 and 1024 bits.

Table I
Auto-Generation ASIC Results

Size XOR gates AND gates Delay
4-bit 15 16 TA + 3TX

8-bit 79 64 TA + 7TX

16-bit 287 256 TA + 7TX

32-bit 1,083 1,024 TA + 9TX

64-bit 4,221 4,096 TA + 10TX

128-bit 16,638 16,384 TA + 10TX

The memory requirement to synthesize designs with a large
number of bits is significantly high. This is due largely to
the number of instances need for such a large bit-parallel
multiplier. The amount of memory available to the synthesis
tool will almost certainly define the largest multiplier which
can be created using auto-generation.

As can be seen, the area of the recursive design is quite
large. Given the large number of XOR gates needed to
construct the recursive trees, the area results are not surpris-
ing. It is interesting to note the delay characteristics of this
design. Given the design of the partial product generation it
was expected that there would be a large linear component,
with a logarithmic component contributed by the XOR trees.
However, when the synthesis tool optimized the partial product
generation module, it changed the delay characteristics of the
proposed multiplier structure.

VI. COMPARISON TOOTHER MULTIPLIERS

For comparison, other parallel implementations ofGF (2n)
multipliers are introduced. The first is based on a modified
version of the Karatsuba algorithm for polynomial multiplica-
tion. The second is a form of Mastrovito multiplier. For more
details on these designs see [7,8]. The multipliers are similar
to the one presented in this work in the sense that their delay
grows logarithmically asn increases. It should be noted that
the delays for the multipliers from [7,8] are purely theoretical
and the delay and area characteristics are based solely on the
algorithms. See Tables II and III for the estimated delay and
area values.

The data shows that the recursive design is generally about
twice as large as the Karatsuba multiplier. This is consistent
for all the values ofn we have synthesized. These results may

indicate that there is more which can be done to optimize
the area of the auto-generated multiplier. It is in the delay
performance that the auto-generated design begins to show a
real benefit. Figure 2 compares the delay characteristics of the
recursive design with those of the other multipliers. As can
be seen in the chart, the auto-generated design is able to out
perform the Karatsuba multiplier at higher operand sizes.

Table II
Karatsuba-Ofman[7] ASIC Estimates

Size XOR gates AND gates Delay
4-bit 9 16 TA + 2TX

8-bit 55 48 TA + 6TX

16-bit 225 144 TA + 10TX

32-bit 799 432 TA + 14TX

64-bit 2,649 1,296 TA + 18TX

128-bit 8,455 3,888 TA + 22TX

Table III
Mastrovito Multiplier[2] ASIC Estimates

Size XOR gates AND gates Delay
4-bit[4] 15 16 TA + 3TX

8-bit[6] 72 64 TA + 6TX

16-bit[6] 285 256 TA + 7TX

32-bit[6] 1,085 1,024 TA + 9TX

64-bit[6] 4,160 4,096 TA + 9TX

128-bit[6] 16,637 16,384 TA + 10TX

Even when compared to the ideal Mastrovito multiplier,
the auto-generated multiplier remains very competitive. The
gap between the two never exceeds oneTX (XOR delay)
for any operand size. In both cases where the auto-generated
multiplier lags behind the ideal Mastrovito multiplier,p(x)
is of the form xn + x4 + x3 + x + 1. For this type of
pentanomial, the synthesis tool seems unable to completely
optimize partial product generation. This may in fact be due
to the limitation of auto-generation or it may be simply a
weakness in the synthesis tool. More detailed analysis of the
resulting networks will need to be performed before results
like [6] can be obtained for these polynomials.

VII. FPGA IMPLEMENTATION

Automatic generation of multipliers inGF (2n) is par-
ticularly interesting for FPGAs, given the large number of
polynomials that are available in the standard. For more
security, several designs could be generated and replaced
periodically. The flexibility of the FPGA, combined with the
auto-generation capabilities, would allow for rapid changes
and make periodic design changes quick and cost effective.

Given the resources available within an FPGA, pipelining
the multiplier becomes a very effective way to improve per-
formance without much of an impact on size. By pipelining
the auto-generated multiplier, the performance hit, caused by
the nature of FPGA implementations, could be significantly
reduced. This change will greatly improve the throughput of
the auto-generated multiplier.
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Fig. 2. Our auto-generated multiplier out performs the Karatsuba multiplier
for larger values of n and remains very close in performance to the ideal
Mastrovito multiplier.
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Fig. 3. Block diagram of pipelined FPGA implementation

The original recursive design was modified to include input
and output registers as well as registers to hold each partial
product. Flip-flops were also added to the recursive XOR trees.
The flip-flops were inserted between every other level of the
tree structure as shown in 3. The recursive VHDL allowed
for easy integration of these flip-flops into the XOR trees. For
details see Section VIII. The results of the FPGA synthesis
for the pipelined implementation are shown in Table IV.

For the target of our FPGA synthesis we again used
Leonardo. We chose Xilinix VIRTEX as our target family.
The specific device was varied depending on the space re-
quirements of the multiplier being generated.

To study the performance of the pipelined recursive multi-
plier, a non-pipelined version was also synthesized to the same
FPGAs. The synthesis results for this multiplier are shown in
Tables V.

As expected, the throughput of the auto-generated mul-
tiplier was greatly increased by pipelining. See Fig. 4 for
a comparison of throughput for the two designs. While the
latency of a single calculation would be less in the non-
pipelined design, the ability of the pipelined multiplier to
complete a multiplication every clock cycles makes it faster
when considering a large number of multiplications performed
back to back.

Fig. 4. Pipelined performance does not include cold start

Table V
Non-Pipelined Multiplier FPGA Results

Size LUTs CLB Slices Delay (ns)
4-bit 13 7 15.67
8-bit 84 42 15.81
16-bit 324 162 19.10
32-bit 1,365 683 21.99
64-bit 5,435 2,718 22.30
128-bit 21,760 10,880 24.95

Table IV
Pipelined Recursive Multiplier FPGA Results

Size LUTs CLB Slices Dff Clk (MHz)
4-bit 21 14 28 193
8-bit 86 44 88 120
16-bit 358 184 368 113
32-bit 1,363 682 1,259 105
64-bit 5,592 2,819 5,638 101

128-bit* 19,101 — 18,110 100

*Unoptimized, only an initial pass could be made.

Currently, the main limiting factor in performance of the
pipelined recursive design is the partial product generation
stage. To allow the synthesis tool to freely optimize partial
product generation, D-flip-flops cannot be inserted into this
stage prior to synthesis. The key to improving performance
at larger operand sizes will be to modify the partial product
generation to allow for automated pipelining without impairing
the synthesis tool’s ability to optimize this stage based on the
polynomial.

VIII. P IPELINING THE RECURSIVEVHDL T REES

To make the multiplier more effective in an FPGA en-
vironment, the design was pipelined to increase throughput
and clock speed. To pipeline the recursive tree structures,
additional generic parameters are passed between levels. The
generic values indicate whether or not the output of that level
should be latched. One value sets the number of recursive
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levels in between latches. The second determines which levels
will actually be latched. This inherit flexibility allows for the
pipelined recursive tree to be optimized for clock frequency
and target device.

The code for tree1 was modified in the following manor:

BEGIN // beginning of architecture body
...

compound tree: IF d > 1 GENERATE
IF L = 0 THEN

the gate1: xor n GENERIC MAP(n => n)
PORT MAP(a => xor input,

z => temp out);
tree ff: PROCESS(reset, clk, temp out)
BEGIN

IF reset = 1 THEN
output <= ’0’;

ELSIF clk’EVENT AND clk=’1’ THEN
output <= temp out;

END IF;
END PROCESS treeff;
subtree array1: FOR i IN 0 TO n-1
GENERATE

the subtree1: tree1
GENERIC MAP(d => d-1, n => n,

L => c, c => c)
PORT MAP

(input => input(i * n** (d-1) TO
(i+1) * n** (d-1)-1),

output => xor input(i),
clk => clk, reset => reset);

END GENERATE subtree array1;
ELSE

the gate2: xor n GENERIC MAP(n => n)
PORT MAP(a => xor input,

z => output);
subtree array2: FOR i IN 0 TO n-1
GENERATE

the subtree2: tree1
GENERIC MAP(d => d-1, n => n,

L => L-1, c => c)
PORT MAP

(input => input(i * n** (d-1) TO
(i+1) * n** (d-1)-1),

output => xor input(i),
clk => clk, reset => reset);

END GENERATE subtree array2;
END IF;

END GENERATE compoundtree;
END; // end of architecture body

L is used to determine if a particular level within the tree
should be latched. c is the number of levels between latches
minus one. WhenL = 0, a D-flip-flop is created to hold the
output of the XOR gate. Each sub-tree created for the levels
above will have L mapped toc. ForL > 0, the level is created
almost identically to the original recursive code, except for the
additional generic and port mappings. In this case, the sub trees

are created withL mapped toL− 1.
This implementation not only allows for control over the

number of pipeline stages within the tree, but also where those
stages are inserted. Changing the value ofL passed to the top
level of the recursive tree will move the latches up or down
within the tree. This would allow the final result to be latched
within the tree or allow the last level(s) to be used and then
latched externally of tree.c can be adjusted to improve clock
frequency or overall latency depending on the implementation.
Larger values ofc will mean fewer pipeline stages with a lower
clock frequency. Smaller values would create more stages and
allow for a higher clock frequency.

IX. CONCLUSION

As the development environment continues to call for
shorter and shorter cycles, auto-generation will become more
and more critical to successful product development. More-
over, the ability to generate a dedicated solution only based
on general parameters is of great interest to a system that
has FPGAs. The results obtained with the synthesis of this
flexible VHDL description for both AMI-CMOS and FPGAs
are comparable to those created by traditional and optimized
design methods. The results show that automatic generation
of polynomial basis multiplier inGF (2n) is a quick, flexible
and efficient alternative to traditional design.

It was when attempting to pipeline the auto-generated mul-
tiplier, that the real advantage of the recursive VHDL became
apparent. The ability of recursion to more accurately model
tree structures makes it clearly superior to cruder descriptions.
When used effectively, recursion can greatly improve the
development of tree structures in VHDL.

The test results we acquired in terms of delay versus area
are promising, and we hope that this design approach for auto-
generating multipliers inGF (2n) can still be improved to lead
to better optimized designs and also to generate new ideas for
other designs.
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