Countermeasure for Differential Power Analysis
using Boolean and Arithmetic masking

Wing Ng
School of Electrical Engineering and
Computer Science
Oregon State University
Corvallis, Oregon 97331
Email: ngwi@engr.orst.edu

Abstract— Differential Power Analysis is a side channel attack
for any symmetrical cryptosystem. This paper will review the
brief explanation of DPA and also some of its countermeasures.
This paper will be focusing on the countermeasure using Boolean
and arithmetic masking. These masking techniques will be useful
for encryption schemes such as IDEA and RC6, etc. since these
schemes require both Boolean and arithmetic operations.

Index Terms— Differential Power Analysis, Masking Tech-
niques, cryptanalysis

I. INTRODUCTION

Differential Power Attack is a side channel attack by ob-
taining information for the secret key through the analysis
the power consumption when executing the cryptographic
algorithm. It was first introduced by Paul Kocher in 1998 [1].
The concept first applied to the symmetrical cryptosystems
such as DES encryption algorithm and later also applied to
AES algorithm. Some of the countermeasures were introduced
to prevent the differential power attack including of inserting
dummy code, power consumption randomization and balanc-
ing of data. However, some of these methods are proved that
to be insufficient. Another countermeasure regarding using
masking was introduced [2] and will be discussed in detail
in this paper.

II. DIFFERENTIAL POWER ANALYSIS

Since differential power analysis was introduced in 1998, it
has been a topic that researchers are trying to overcome with.
Differential power analysis based on the nature on how the
transistors consume power while executing the cryptographic
operations. By measuring the circuit’s power consumption,
attackers could find out when will the device executing the
cryptographic operation such as the 16 DES rounds. From
the following graph (Figure 1) from [1], attackers could trace
the pattern of the power consumption curve to determine
when is the device executes the DES round. By having this
information, attackers could analysis this and figure out the
secret key information of the DES operation.

- 50
<
g 45
S 35 ! I
b
B A el
il f1
20
4] 100 200 300 400 500 600 700 800
Time (1S)

Figure 1: Power analysis trace showing DES rounds.

There are different kinds of attack regarding power analy-
sis. The basic one referred as simple power analysis (SPA).
During the SPA attack, the attacker could observe the power
consumption to determine the cryptographic operations. One
of the examples of SPA is to break RSA implementation
by observing the differences between the multiplications and
squaring operations. It also could be applied to DES to look for
the differences between the permutation and shift operation.

Besides the SPA, the more powerful of the attack based
on the power analysis will be the differential power analysis
(DPA). The differences between SPA and DPA is that DPA is
using a statistical analysis and error correction techniques to
reveal the information related to the secret key rather than just
by observation.

DPA attack usually applies to the portable secure device
such as smart card. It is easier to collect the power consump-
tion data from smart card since it is often to be read by the
public smart card reader.

To perform DPA, it is divided into two phases: data col-
lection and data analysis. The number of traces that needed
to be measured depends on what kind of countermeasures is
against to. It is possible to collect less than 15 traces to find
out the DES key from the smart card. It is also possible to
combine multiple samples in the same trace and analysis them
to defeat some of the countermeasures. This high-order DPA
is harder to block since it analysis multiple samples to reveal
the information.

The following will be a belief descripion on how DPA attack
applies to DES. Assume that 1000 input samples (I3 ...I1000)
are being collected for the analysis. First, measure the power
consumption curves (Cf...C'iggo) for the first round with 1000
DES samples. Next, compute the mean curve (MC) of the
power consumption for all the samples.

The next step, we need to focus on the first output bit of
the S-box. Let j be the first output bit. The value of 5 will be

based on the 6 bits of the secret key. The attacker then makes
a hypothesis on those 6 bits. Next, he or she computes the
value of j from the input value (I;) and the guessed 6 bits.
All the inputs will be divided into two possible of either j = 0
orj=1.

Next, we need to compute the MC' for j = 0. If MC and
MC" are similar, then the guessed value is not correct and the
attacker need to try another set of the 6 bits value. However,
if MC and MC' have a distinct differences, then it means the
guessed key is correct.

Figure 2 shows the DPA traces applies to DES operation.
The first trace is the reference trace collected from the DES
operation. Moreover, the other traces are produced by the
guess values of the secret key. The correct guessed secret key
will be one showing different from the reference trace.

& 20 e 0 A M o

’ - iyl
A P oo
A AP

o 10 20 3 40 50 60 70

Current (uA)

o

)

& 00 100 170 120 130 740 150 160 170

Time (uS)
Figure 2: DPA traces for analysis DES

III. COUNTERMEASURES FOR DPA

Since Kocher [1] introduced DPA, it raised the attention
on how to prevent the DPA. Some of the countermeasures
have been proposed in order to solve this problem. Some of
the countermeasures including inserting dummy code, power
consumption randomization and balancing of data. Inserting
dummy code could be done by insert extra codes to modify
the sequence of the instructions that needed to be executed.
The insertion could be added according to the parameter of the
cipher in order makes it differently for each operation. Power
consumption randomization could be implemented by adding
extra hardware to add noise to the power consumption data.
However, some of these countermeasures are not sufficient
or require some trade-offs including extra hardware or more
memory to execute the cryptography operations.

There are three major types of counter measures: (1) random
timing shifts, (2) replacing some of the critical instructions
for the cryptographic algorithm, and (3) using an algorithm
to encode the original data. Most of the countermeasures
are related to encoding the power consumption information.

Boolean masking and arithmetic masking is one of the coun-
termeasures that have been proposed under the encoding power
consumption data category.

IV. BOOLEAN AND ARITHMETIC MASKING

The masking techniques only apply to the operation where
it could produce a masked output based on the masked input.
There are two masking techniques: Boolean masking and
Arithmetic masking. Boolean masking involves randomizing
the Boolean operation using some random variables and arith-
metic masking is similar to that.

Boolean masking: z' =z & r
Arithmetic masking: 2’ = (z —r) (mod 2F)

z' referred as the masked output and r represented the random
variable.

Since some of the cryptographic algorithms such as IDEA,
RC6 and TWOFISH, etc. involves both Boolean and arithmetic
operations, an effective method would be needed to switch
between Boolean masking to arithmetic masking and via verse.
Both Goubin[3] and Coron and Tchulkine[4] proposed similar
idea for a more efficient way for Boolean and arithmetic
switching.

By applying the masking technique, the original data will
be split into multiple shares and the masked data will be
more evenly distributed than the original. Due to this reason,
attackers need to evaluate multiple distributions for each shares
and the computation time will be increased exponentially.
However, applying masking technique also take more memory
and computation time to mask and unmask the data. Some-
times, it also involves the conversion between different kinds
of masking. Switching Boolean and arithmetic masking could
be a problem.

V. DEFINITION OF BOOLEAN AND ARITHMETIC MASKING

To perform a Boolean masking, we need to mask the data as
z' =z @®r where r is the random variable and it is uniformly
distributed. To describe this in more detail, we can see if 3 =
21 @ 22, then the masked value 2] and z} are referred as
2y = 21 ®ry and 25 = z2 @ ro. Moreover, z§ = z} & 2}
where r3 =71 @ ry and then z3 = 2§ ® r3.

Arithmetic masking is doing as the similar way. 23 = 1 +
z2 and the mask value for z} and z will be z; + 71 and
o + r2. Therefore, when computing the masked value for
x4, we have z§ = z{ + 2} and r3 = r1y + 2. As a result,
z3 =% +7T3.

VI. SWITCHING BETWEEN BOOLEAN MASKING AND
ARITHMETIC MASKING

In [3] Goubin already proposed an effective switching
method between the Boolean masking to arithmetic masking.
However, the switching from arithmetic masking to Boolean
masking is not that efficient. Therefore, in [4], Coron and
Tchulkine modified the algorithm in order to reduce the
execution time. We will discuss the following based on the
algorithm that was proposed in [4]. Both of the methods are
similar except in [4] proposed to use a pre-computed lookup
table.

VII. BOOLEAN TO ARITHMETIC MASKING

In [3] had proposed an efficient algorithm for conversion
from Boolean masking to Arithmetic. The algorithm will be
described as follow:

Input: (z',r) asz =2’ ®r
Output: (A,r) asz=A+r

z' is the masked value from Boolean masking and A is
the masked value from arithmetic masking. This algorithm
requires two more variables besides the random variable r.

Generate the random value for both » and R

T<z®R
T<T-R
T<Tox
R<Ror
A<z ®R
A< A-R
A< AT

Goubin’s algorithm for Boolean to Arithmetic masking

This conversion only requires seven operations including 5
XOR and 2 subtractions. However, the algorithm for arithmetic
masking to Boolean masking takes more work.

Input: (A,r) asz=A+r
Output: (z',7) asz =z’ & r

z' is the masked value from Boolean masking and A is
the masked value from arithmetic masking. This algorithm
requires two more variables besides the random variable r.

Generate the random value for both » and R

T < 2T

. <«R®r
C<RAZ

' <ToA
R<Rox
R<RAT
C<=Ca®R
R<TANA
C<=CoeR
fork=1to K—1doR<TAr
R<RoC
T<TANA
R<R&®T

T < 2R

endforz' «z' T

Goubin’s algorithm for Arithmetic to Boolean masking

This algorithm needs (5K + 5) elementary operations and
it is not as easy as the algorithm for Boolean to arithmetic
masking.

VIII. PROPOSED ALGORITHM FOR ARITHMETIC MASKING
TO BOOLEAN MASKING

In the proposed algorithm from Coron and Tchulkine for the
switching between Boolean masking and arithmetic masking,
it requires to pre-compute a table for all the value for the
switching between Boolean and arithmetic masking. Since
the output value computed already, when executing the actual
switching will be a lot easier since it only need to pick the
value from the table instead of computing it each time. How-
ever, this idea only will be benefit if the pre-computed table
would be require to calculate once for the whole cryptographic
operation. Otherwise, this algorithm will slower down the
execution time since it takes time to create the lookup table.

For the proposed algorithm, it requires four basic steps.
First, generating the Boolean masked value from arithmetic
masking into a size of 2% bits table where k is the number of
the bits of the input.

Second, performing the conversion from arithmetic masking
to Boolean masking based on the lookup table. Since it is
required to generate a lookup table, this method is more
suitable for small k.

For a larger bits input, the size of k£ will be split into smaller
size of two or more shares and then combine them together
after the conversion. However, it is required to compute an
extra lookup table for the carry when combining the two shares
together. Another lookup table for the size of 2¥ is generated.
The details of the larger value will be shown as follow:

First, we split the inputs into ! x k bits. There are two input
variables in arithmetic masking A and R from z = A+ R
(mod 2'*F). We need to covert them into the Boolean
masking form such as z = z' @ R. Split R into R;||R> and
R; with the size of (I — 1) x k bits and R2 of size k bits.
Generate a random k& bits r, we get

A< (A-r)+ Ry (mod 2%)

We also need to split A into A;||A2 as A; has the same
size of Ry and As with size of k. Then, we compute as follow

z = (A]|42) + (Rllr) (mod 2'%)

Since the variable is split into two shares, if A + 7 > 2k,
then A; < Ay +1 (mod 2¢-1**) This computation acts
as the carry from the addition of Az + r and added to A;.

Next, we need to split z into z1||zs and z; has the size
same as A; and R;. Then, we could compute the followings:

1 = A1 + R
(mod 2*)

(mod 2¢—V**) and z, = Ay + r

After we got these equations, we could use the pre-
computed lookup table to find out the Boolean masked value
such that z < G[A2] where G is the pre-computed lookup
table and Ao is the index of G. For zj, we could use a
recursive method to find out its value. After obtaining the
values for z{ and x5, we are able to get 2’ such as 2’ = 1 ||z}.
The output of the conversion will be z = 2’ ® R.

Coron and Tchulkine also compare its efficiency along with
Goubin’s algorithm (see Table 1) for different input bits in
order to show the difference on how their algorithm will be
benefit when performing on a small input size.

Ts |15 30| 50 5|10 20| Gs 8|6 52| Glaa 5 [Gaa a0
Pre-computation time| 64 [61 | 64 | 64 0 0 0 0
Clonversion fime] 7%] 15 45 [660 | 165
Table size 321321321 32 0 0 0 0

Table 1: Comparison with Goubin’s algorithm

From the given Table 1, Tj; referred as Coron and
Tchulkine’s algorithm and G; ; referred as Goubin’s algorithm.
The variable ¢ represents the number of bit of the input and
7 represents the number of bit of the system. According to
Coron and Tchulkine’s comparison, their algorithm performs
better for the smaller system such as an 8 bit microprocessor.
It is useful for the smart card since the 8 bit microprocessor
is a common platform for the smart card. However, when it
moves to a larger system with a larger input bit, Goubin’s
algorithm will be a better choice. This difference is closely
related to the size of the pre-computed lookup table.

IX. CONCLUSION

Boolean and arithmetic masking sounds like a possible
way to prevent DPA, however, the masking technique also
involves some overhead including taking more memory and
more computation time for conversion when performing the
cryptographic algorithm. However, these overhead sometime
are necessary in order to prevent the side channel attack to
ensure security. Both of the hardware and software solution
should be considered to achieve better efficiency along with
all the trade-offs.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” pp. 388—
397, 1999.

[2] J. Coron and L. Goubin, “On boolean and arithmetic masking against
differential power analysis,” Proceedings of CHES 2000, vol. 1965, pp.
231-237, 2000.

[3] L. Goubin, “A sound method for switching between boolean and
arithmetic masking,” Proceedings of CHES 2001, vol. 2162, pp. 3-15,
2001.

[4] J. Coron and A. Tchulkine, “A new algorithm for switching from
arithmetic to boolean masking,” Proceedings of CHES 2003, vol. 2779,
pp. 89-97, 2003.

