
1

Analysis of AES Hardware Implementations
Song J. Park

Department of Electrical & Computer Engineering

Oregon State University, Corvallis, Oregon 97331

E-mail: parkso@ece.orst.edu

Abstract— Following paper examines hardware implemen-
tation methods regarding Advanced Encryption Standard
(AES). Compared to software implementation, migrating to
hardware provides higher level of security and faster encryp-
tion speed. An overview of existing AES hardware imple-
mentation techniques are summarized. Then the direction
of reconfigurable coprocessor as a cryptography hardware is
proposed.

Keywords— AES, Rijndael, coprocessor, hardware imple-
mentation, optimization.

I. Introduction

In October of 2000, the National Institute of Standards
and Technology (NIST) announced Rijndael as the winner
of Advanced Encryption Standard (AES) contest, in effort
to address threatened key size of Data Encryption Standard
(DES). Currently, most AES algorithm are implemented in
software [1]. In software approach, the secret key is vulner-
able to attacks and rely on underlying programs [2]. In ad-
dition, achievable speed by software implementation is not
acceptable for internet applications such as routers. This
leads to hardware design of AES where parallel processing
and pipelining is possible [3]. Therefore, hardware systems
offer superior performance with higher throughput. He-
lion Technology claims that speed exceeding 16 Gbps for
FPGA and 25 Gbps for ASIC design is available [4]. More-
over, hardware implementations are considered physically
secure since tempering by an outside attacker is difficult.

II. Rijndael Algorithm

A brief introduction of Rijndael encryption and decryp-
tion algorithm is provided. Rijndael is a block cipher devel-
oped by Joan Daemen and Vincent Rijmen. The algorithm
is flexible in that any combination of data and key size of
128, 192, and 256 bits are supported. However, AES only
allows the data length to be 128 bits while conserving the
property of supporting three different key lengths. AES can
be divided into four basic operation blocks which operates
on array of bytes, organized as a 4 × 4 matrix called the
state. Four basic steps, called layers consist of the ByteSub
Transformation, the ShiftRow Transformation, the Mix-
Column Transformation, and AddRoundKey [5].

• The ByteSub Transformation:
Non-linear byte substitution which is composed of multi-
plicative inverse and affine transformation.

Author is a graduate student at the Department of Electrical &
Computer Engineering, Oregon State University, Corvallis, Oregon
97331. E-mail: parkso@ece.orst.edu

• The ShiftRow Transformation:
Linear diffusion process, operating on individual rows. De-
pending on the row location, offset of left shift varies from
zero to three bytes.

• The MixColumn Transformation:
Matrix multiplication over GF (28). Column vector is mul-
tiplied with a fixed matrix where the bytes are treated as
a polynomials rather than numbers.

• AddRoundKey:
Simple byte XOR operation with the round key.

These four layer steps describe one round of AES. A 128
bit round key, used in AddRoundKey operation, is gen-
erated by the key schedule. Sub-keys are derived from
the original user key by XOR operation of two previous
columns. For columns that are in multiples of four, the pro-
cess involves additional round constants, S-box, and shift
operation.

Excluding the first and the last round, AES encryption
round executes nine iterations. First round of the encryp-
tion step performs XOR with the original key and the last
round skipss MixColumn layer.

All four layers described above have corresponding in-
verse operations such that the decryption is simply the
reverse order operations of these inverse transformations.
Note that the constant matrix for the MixColumn multi-
plication used in the decryption process consist of higher
values. The result is more complex decryption unit com-
pared to the hardware for encryption.

III. Hardware Implementations

Currently, several hardware implementation methods
have been designed and published. There are many de-
sign choices encountered during hardware implementation
of AES. In reality, these choices will be limited to its appli-
cations and budget. From the perspective of performance,
major decision lies in the tradeoff between area and speed.
For example, fast system is obtained at a cost of increased
area, and vice versa.

Before looking into different hardware architectures, ba-
sic hardware concepts are defined.

• Pipelining: Replicating rounds and placing registers in
between. Increases throughput.
• Iterative Looping: One round of hardware design, which
forces teh algorithm to reuse the same hardware.
• Loop unrolling: Refers to the process of unrolling multi-
ple rounds.



2

• Latency: An elapsed time between start to finish of en-
cryption.

For modes with feedback operations, pipelined design
has no additional advantage since the encryption depends
on the previous results. Otherwise, pipelining can increase
the bandwidth, although area would be increased. For area
sensitive applications, iterative looping design offers small
area running at slower speeds.

Figure 1: Iterative Loop Design.
S-box consumes 84% of area.

A. S-Box Optimization

In AES hardware implementation, S-box design con-
tributes a major role in optimization. There are two ap-
proaches for S-box design:
1. Design a multiplicative inversion and affine transforma-
tion seperately
2. Construct a logic circuit defining the input and output
of the S-box function
For a decomposed design, consisting of multiplicative in-
version and affine transformation, area minimizations are
possible using mathematical theorems. Previous research
in this area include compact inversion circuits over GF (28)
based on Fermat’s Little Theorem, low latency algorithm,
and extended Euclid’s algorithm [6]. Second method allows
faster implementation where EDA synthesis tools create an
optimized S-box structure.

An iterative loop based, AES encryption unit was de-
signed in VHDL (VHSIC Hardware Description Language).
According to the systhesis result, area of a S-box respect
to all the hardware in one round is 84.4% [7]. Note that
the result only relates to the encryption unit. A novel idea
to minimize S-box space is to share the encryption and de-
cryption Look-up Tables (LUT). The idea is to have one
set of encryption and one set of decryption S-box unit in

ROM. Then, S-boxes are reused for both encryption and
decryption by initializing the LUTs corresponding to the
current operation [8]. This method only requires S-box
area that is equivalent to one encryption unit.

With Similar purpose, [9] proposes a modified decryption
algorithm such that the order of inverse operation is equiv-
alent to the order of encryption. Although, significance
of the operations for decryption is different, this modifica-
tion allows optimal pipelining. In addition, the SubByte
operation shares the multiplicative inverse step for both
encryption and decryption as shown in Fig. 2 [9]. As men-
tioned before, effectively utilizing the SubByte operation
saves substantial amount of area.

Figure 2: Pipelined Architecture.

B. Key Scheduling

Two options exist for designing key schedule function.
First method is to generate all the required sub-keys in ad-
vance or in beginning. This design requires a huge buffer
for storing all the expanded keys. Second option is to gen-
erate sub-key in parallel with the encryption round. Second
method requires much less buffer space, since only one 128
bit sub-key is produced and stored. Plus, the cold start
latency of sub-key generation is smaller for this method.
Unfortunately, the decryption unit uses the sub-keys in re-
verse order, forcing pre-generation of all sub-keys.

C. Cryptanalysis

An important consideration for any cryptographic sys-
tem is the possible attacks against the algorithm. Side-
channel attacks refers to a cryptanalysis method where
the secret key information is attacked by gathering cer-
tain physical measurements on the electronic device [10].
Measurements include power consumption, the time, and
electromagnetic radiation. In particular, power analysis at-
tacks are powerful as they do not require expensive math-
metical equipment nor deep understanding of the algo-
rithm. Basic concept behind power analysis attack is that
statistical samples of the given key and output results are
stored in beforehand. Then the retrieved collection of data
is used to assist in recovering the secret key. Therefore,
countermeasures should be imposed and applied, in order
to be resistant to these attacks. However, the countermea-



3

sures against these attacks are typically costly to the speed
and to the area of the system [10].

Strategies to combat side-channel attacks concentrate on
de-correlating the output and randomization. For instance,
introducing random timing shifts, adding dummy instruc-
tions, and applying random mask are techniques that at-
temp to counteract the side-channel attacks.

D. Routing

Although efficiency of hardware implementation was one
of the evaluation criteria for choosing AES, only few hard-
ware designs are presented for FPGA or ASIC platforms
[9]. Analysis of routing was not mentions in most pa-
pers. For FPGA target, routing placement is predeter-
mined within the FPGA architecture and this is the cause
for greater area in FPGAs compared to ASIC designs. On
contrary, area of ASIC designs would be greatly affected
by routing overhead, where the minimum bus length is 128
bit. ASIC’s floorplan by [9] report that the area estima-
tions of routing were off by a factor of two in Synopsis.
Previous experience with layout CAD tools helped me to
realize the complexity of routing problems and its effect on
chip area. In order to achieve optimized ASIC hardware
design of AES, efficient routing algorithm is mandatory.
Especially, with heightened undesirable properties of wires,
minimizing wire space is equally important as optimizing
core functional blocks.

Characteristics of ASIC, FPGA, and software implemen-
tations are summarized in a table [3].

Table 1: Implementation Comparison.

ASIC FPGA Software

Parallel Processing yes tes limited

Pipelining yes yes limited

Speed very fast fast moderate

Temper Resistance strong strong weak

Design Cycle long moderate short

IV. FPGA Coprocessor

Thus far, sections examined a stand alone AES hardware
implementations. Following section describes the design
which supports a coprocessor. Organization of this archi-
tecture consist of a CPU with an aid of a FPGA coproces-
sor. Coprocessor design integrates software and hardware
into a single system, along with the reconfigurable capa-
bility of FPGA. Generally, the CPU controls the overall
system operations while FPGA is responsible for calcula-
tions involving extensive computations. Moreover, FPGA

is reconfigurable that can be reprogrammed in few millisec-
onds. As an example, consider an embedded system with
a coprocessor, connected over a network using an ethernet.
Depending on different situations, the FPGA can be re-
programmed dynamically according to the real-time status
[11]. This allows FPGA to dynamically adjust to satisfy
its surrounding requests.

A. DES Experiment

Hardware platform that was researched is an embedded
system by Wind River. The physical setup of this board
include an IBM PowerPC and Xilinx FPGA daughter card
connected through a custom peripheral bus [12]. As a real
world experiment, triple DES cipher was implemented on
FPGA coprocessor. The result showed that an impres-
sive 13 times speed improvement over algorithm running
on software [13]. This experiment was an initial phase of
CPU and FPGA construction, where large portion of DES
functionality resided in the FPGA.

B. Issues

Many issues arise for the mixed system. First, commu-
nication between the processor and the FPGA must be
managed. Type of communication protocol, management
of control signals, and handling of crossing data needs to
be developed. Second, debugging and simulating the copro-
cessor design should support the combination of software
and hardware. Lastly, limited speed of the bus, connecting
CPU and FPGA should be efficiently utilized. Designer
should avoid degrading the overall system’s performance
by analyzing these parameters. Speed of the bus is the
major bottleneck imposed on coprocessor systems. This is
similar to the memory gap between processor and memory
in the PC industry. I assume that coping with this problem
of bus speed would be a major concern for the future.

C. Partitioning

Partitioning of the encryption algorithm between soft-
ware and hardware is an interesting topic for research. Dur-
ing a partition process, a designer should account for fac-
tors relating to bus speed and inner communication. For
dividing the AES system, one idea would be to allow the
processor to compute shift operation and assign rest to the
FPGA.
• CPU - ShiftRow and Control
• FPGA - SubByte, MixColumn, and KeyAddition
Shift operations in hardware represent mere wiring. Mov-
ing this function may benefit the hardware implementa-
tion due to reduced amount of wire interconnects. In other
words, decreased wire parasitics and smaller routing over-
head. Moreover, most of the AES function would operate
on the FPGA and thus minimal communication occurs be-
tween the CPU and the FPGA.

V. Future Work

A major bottleneck with the coprocessor system is the
slow communication link between the CPU and the FPGA.
More research in this area is required to determine a way to



4

effectively utilize the FPGA coprocessor that is connected
through a slower bus. Additionally, concepts relating to
decomposing an algorithm for software and hardware re-
quires further research. Because coprocessor system com-
bines software and hardware, development of simulators
and design environment which supports both software and
hardware is needed.

VI. Conclusion

An analysis of AES hardware implementations were ex-
amined in this paper. By implementing AES algorithm
on a hardware, greater throughput and higher security is
achieved. Major optimization methods were concentrated
on the S-box design, which consumed most of layout area.
The concept of mixed software and hardware design gener-
ates a new area of interest, although there are many unan-
swered questions.

References

[1] A. Elbirt, Reconfigurable Computing for Symmetric-Key Al-
gorithms, Ph.D. thesis, Department of Electrical Engineering,
Worcester Polytechnic Institute, 2002.

[2] P. Gutmann, “An open-source cryptographic coprocessor,” .
[3] K. Gaj and P. Chodowiec, “Hardware performance of the AES

finalists-Survey and Analysis of results,” .
[4] “Helion Technology,” Tech. Rep., Helion, 2003.
[5] W. Trappe and L. Washington, Introduction to Cryptography

with Coding Theory, Prentice Hall, New Jersey, 2002.
[6] S. Morioka and A. Satoh, “An optimized s-box circuit archi-

tecture for low power aes design,” in Cryptographic Hardware
and Embedded Systems - CHES 2002, Ç. K. Koç and C. Paar,
Eds. Aug 13–15, 2002, Forth International Workshop, Redwood
Shores, USA, pp. 172–186, Springer-Verlag.

[7] B. Megarajan and S. Park, “Hardware implementation of aes
(rijndael),” 2002, Webpage.

[8] J.V. McCanny M. McLoone, “High performance single-chip fpga
rijndael algorithm implementation,” in Cryptographic Hardware
and Embedded Systems - CHES 2001, Ç. K. Koç and C. Paar,
Eds. May 14–16, 2001, Third International Workshop, Paris,
France, pp. 65–76, Springer-Verlag.

[9] A. Lutz, J. Treichler, F. Frkaynak, H. Kaeslin, G. Basler,
A. Erni, S. Reichmuth, P. Rommens, S. Oetiker, and W. Ficht-
ner, “2gbit/s hardware realizations of rijndael and serpent: A
comparative analysis,” in Cryptographic Hardware and Embed-
ded Systems - CHES 2002, Ç. K. Koç and C. Paar, Eds. Aug
13–15, 2002, Forth International Workshop, Redwood Shores,
USA, pp. 144–158, Springer-Verlag.

[10] J. Golic and C. Tymen, “Multiplicative masking and power anal-
ysis of aes,” in Cryptographic Hardware and Embedded Systems
- CHES 2002, Ç. K. Koç and C. Paar, Eds. Aug 13–15, 2002,
Forth International Workshop, Redwood Shores, USA, pp. 198–
212, Springer-Verlag.

[11] “Re-Configurable Computing,” Tech. Rep., Wind River, August
2002, White Paper.

[12] “Hardware Reference Designs for SBC405GP,” Tech. Rep.,
Wind River, 2001.

[13] “Real World Experiences Designing For Mixed CPU + FPGA
Systems,” Tech. Rep., Celoxica, August 2002, White Paper.


