
1

Scalable Montgomery Multiplication Algorithm
Brock J. Prince

Department of Electrical & Computer Engineering,
Oregon State University, Corvallis, Oregon 97331

E-mail: princebr@engr.orst.edu
May 29, 2002

Abstract— Security in today’s networked world is
a rising concern. All private information passed
through a network or simply transmitted from a
source to a destination, must be encrypted to en-
sure proper security. This is especially important
since there are predictions which indicate that the
number of wireless network users will surpass the
number of wired network users by the year 2004.
There are many algorithms that do this, of which
most use modular multiplication as a basic build-
ing block, but we need to concentrate on hardware
that will support them. Montgomery’s algorithm
is used to perform fast modular multiplication with
minimal complexity. Due to the various sizes of
operands and the modulus used in Montgomery’s
multiplication and its applications, we are inter-
ested in an architecture that implements the algo-
rithm in a flexible manner that can adapt to the
required precision. In order to be worthwhile, we
must balance execution time, physical area and cost
of production.

I. Introduction

The Montgomery Multiplication (MM) algorithm
provides a fast and efficient means of performing the
modular multiplication that is required in many en-
cryption algorithms such as the Diffie-Hellman key ex-
change, discussed in [1] and [2], and RSA public-key
cryptosystems. The MM algorithm replaces the divi-
sion by M operation with division by a power of 2,
which is easy to implement on a computer since num-
bers are represented in binary form. Montgomery’s
algorithm is especially useful in applications such as
modular exponentiation where multiple MM’s are per-
formed on the operands before the result is trans-
lated back to the original integer domain. An out-
line of this technique is covered in [3]. In this paper,
the word-based, scalable hardware implementation of
Montgomery’s algorithm, presented by A. F. Tenca
and Ç. K. Koç in [?] and [4], will be explored. Then
I will propose an optimal fixed bit precision based on
timing, utilization and speedup analyzes.

II. Montgomery’s Algorithm

The operation of Montgomery’s algorithm is defined
as:

Z = MM(X,Y ) = XY r−1 mod M

where r = 2n and M is an integer in the range
2n−1 < M < 2n such that gcd(r, M )=1. Because r
is a power of 2, this condition is easily satisfied by
choosing M to be an odd integer. In it’s simplest
form, Montgomery multiplication can be performed
using an add-shift algorithm. Let’s represent X as
(Xn−1Xn−2 · · ·X0). To find the product XY , which
can be written as t = (X0 + X12 + · · ·Xn−12n−1) · Y ,
we can use the following, as given in [5]:

• Step 1: t := 0
• Step 2: for i = n− 1 to 0
• Step 2a: t := t + Xi · Y
• Step 2b: t := 2 · t

In order to take the product XY and multiply it
by r−1 = 2−n to get XY r−1, we will have to change
the direction of the summation to t = (Xn−12−1 +
Xn−22−2 + · · ·X02−n) · Y . This modifies the previous
process to:

• Step 1: t := 0
• Step 2: for i = 0 to n− 1
• Step 2a: t := t + Xi · Y
• Step 2b: t := t/2

Finally, to reduce the product modulo M, we can
subtract M from the partial product during each add-
shift step. We must, however, ensure that the partial
product is even, or else information will be lost. The
check is performed by examining the least significant
bit (LSB) of the partial product t. An easy solution is
to add M to the partial product if it is odd, since M is
always odd as mentioned earlier. This will make the
result even, thus a right-shift will perform the divide-
by-two operation without error. The final algorithm
becomes:



2

• Step 1: t := 0
• Step 2: for i = 0 to n− 1
• Step 2a: t := t + Xi · Y
• Step 2b: if t is odd, t := t + M
• Step 2c: else t := t/2

After n iterations, M is subtracted from t if if t is
larger than M, which is considered the final correc-
tion step. Notice that the reduction (mod M) using
this method doesn’t deal with any division operations,
only a shift. Also, to speed things along, the partial
product can be checked for even or odd before the sum
is computed in Step 2a, by the following:

t0 := t0 ⊕ (XiY0)

This calculates the LSB before the rest of the sum.
If this bit is a 1, then the result will obviously be odd,
so then M will need to be added in the following step.
If the bit is 0, then the result is even.

Note: For hardware implementation, an n+1 size
register is needed to store t, since the addition in Step
2a will require 1 extra bit of precision, then the divi-
sion in Step 2c will bring the result back to n bits.

III. Implementation of MM

Consider the operation c = ab mod M where a, b
and M are n-bit binary numbers. The Montgomery
algorithm is used to transform the integer a in the
range [0, M -1] to another integer in the same range,
called the image, or M -residue of a. The M -residue
of a is defined as a = ar mod M . In order to pass
between the Integer space and it’s image, we perform
the following operations on the operands (using a↔ a
as an example):

• Integer → M -Residue:
a = MM(a, r2) = ar2r−1 mod M = ar mod M

• M -Residue → Integer:
a = MM(a, 1) = arr−1 mod M = a mod M

Figure 1-Integer/Residue Space

Figure 1 illustrates the modular multiplication pro-
cess using MM. Within the Integer space, a and b can
be multiplied together to get c = ab mod M using con-
ventional modular multiplication which requires divi-
sion by M, a complex, time-consuming operation. Us-
ing the MM algorithm, each of the operands are trans-
lated first to the Image space, multiplied together and
then translated back to Integer space. This requires
at most four MM operations which, when compared
to conventional modular multiplication, is much less
complex.

In order to simplify the MM operation further, [5]
suggests to precompute r (mod M) and r2 (mod M).
Since r2 is very large, during the precomputation it
can be reduced (mod M) to r2 < M and then stored
for later use. So, when MM is performed, r2 would be
used in place of r2 when mapping to the Image space.

Below are two different algorithms that make use of
the Montgomery algorithm to perform modular mul-
tiplication. The first one is straightforward in that
it maps both operands to the Image space, performs
the multiplication there, and then translates the re-
sult back to the Integer space. The second algorithm
shows how the same result can be obtained in the
Integer space using only two Montgomery multiplica-
tions.

Algorithm 1 Algorithm 2
a = MM(a, r2) a = MM(a, r2)
b = MM(b, r2) c = MM(a, b)
c = MM(a, b)
c = MM(c, 1)



3

Algorithm 1 corresponds directly to Figure 1.
Here is a step-by-step explanation:

• Step 1: a = ar mod M
• Step 2: b = br mod M
• Step 3: c = abr−1 mod M = abr mod M
• Step 4: c = cr−1 mod M = ab mod M

It is easy to see how Algorithm 2 arrives at the
same result:

• Step 1: a = ar (mod M)
• Step 2: c = (ar) · (br−1) (mod M) = ab (mod M)

Montgomery’s algorithm is very useful in not only
modular multiplication, but modular exponentiation
as well. This is covered very well by Ç. K. Koç in [3].

IV. Multiple Word Radix-2 Montgomery
Multiplication

The Multiple Word Radix-2 Montgomery Multipli-
cation (MWR2MM) algorithm, originally presented in
[4], is such that it makes the original Montgomery
multiplication algorithm scalable. That is, it can be
used with non-fixed operand and modulus size, n. For
example, the same hardware could perform MM with
n = · · · 32, 64, 128, · · ·. This is accomplished by
scanning Y word-for-word and X bit-by-bit.

• M - modulus
• n - bit precision
• w - word size
• e - number of words in operand

The implementation of this algorithm requires three
basic operations, word-by-bit multiplication, bit-shift,
and addition, making it efficient in hardware.

As mentioned above, we will be working with in-
dividual bits of X and words of Y. In addition, the
partial product’s working variable, T, and the mod-
ulus must be dealt with at a word level. Therefore,
we represent X, Y, TandM as follows, where the sub-
scripts and superscripts correspond to the bit position
and word position, respectively:

• X = (x(n−1), x(n−2), · · ·, x(0))
• Y = (Y (e−1), Y (e−2), · · ·, Y (0))
• T = (T (e−1), T (e−2), · · ·, T (0))
• M = (M (e−1),M (e−2), · · ·,M (0))

The final algorithm that I presented above, which
refers to the steps required to carry out the algorithm,
will need to be modified in such a way to operate at
the word level for all components except for X. As
found in [6] and [7], we use the following algorithm,
known as the Multiple Word Radix-2 Montgomery
Multiplier (MWR2MM):

1. T = 0
2. for i = 0 to n− 1
3. (Ca, T

(0)) := xiY
(0) + T (0)

4. if T
(0)
0 = 1 then

5. (Cb, T
(0)) := T (0) + M (0)

6. for j = 1 to e
7. (Ca, T

(j)) := Ca + xiY
(j) + T (j)

8. (Cb, T
(j)) := Cb + M (j) + T (j)

9. T (j−1) := (T (j)
0 , T

(j−1)
w−1...1

10. end for
11. else
12. for j = 1 to e
13. (Ca, T

(j)) := Ca + xiY
(j) + T (j)

14. T (j−1) := (T (j)
0 , T

(j−1)
w−1...1

15. end for
16. end if
17. end for
18. if T ≥ M then
19. B := 0
20. for j = 0 to e− 1
21. (B, T (j)) := T (j) −M (j) −B
22. end for
23. end if

Figure 2-MWR2MM Algorithm

In this manner, a partial product, T, is generated
for every bit of X. Once the last word of Y has
been read, another bit of X is taken, and this is re-
peated until all bits of X have been used. Therefore,
no constraints are placed on the bit precision of the
operands. There will, however, be some practical re-
straints placed on the system related to the memory
size and datapath. For implementation of this algo-
rithm in GF(p) and GF(2k), please refer to [6].

V. Optimal Precision

Now that the operation of the scalable architecture
has been covered, I will explain a few test procedures
and their results First of all, a new variable must be
introduced. The number of processing elements avail-
able on a chip for pipelining the execution, p, will help
to determine some metrics for evaluation.



4

The total computation time (measured in clock cy-
cles) for e + 1 ≤ 2p can be defined as:

t = 2kp + e− 1

And for e + 1 > 2p:

t = k(e + 1) + 2(p− 1)

Where k = dn
p e. For the case where n = p, the total

time expression reduces to:

t = 2n + e− 1

Now, we will look at the total utilization of the
available processing elements, defined as the number
of time slots per bit of X×n divided by the total time
(in cycles)×p:

U = (e+1)n
tp

The scalable architecture was tested with word size
w = 8 bits and with 1, 2 and 3 processing elements.
Figure 3 indicates the impact in performance as a
function of the operand’s precision.

Figure 3-Performance with w = 8 bits

Figure 4 gives an illustration of how the word size
impacts the overall performance.

Figure 4-Impact of word size for p = 4

VI. Conclusion

From the standpoint of a flexible architecture, the
Multiple Word Radix-2 Montgomery Multiplier is an
impressive system. It can allow virtually any size
operand to be used which will allow it to be inte-
grated into a variety of encryption algorithms with
varying security levels. From the examination of the
performance, however, we found that for operands
with more than about 40 bits of precision using 3 pro-
cessing elements, there is not much gain in terms of
total execution time or module utilization. Therefore,
an operand size that is a power of 2, which in this case,
less than or equal to 40, we will have optimal perfor-
mance. So, a fixed precision system with operand size
of 25 = 32 bits is sufficient.

References

[1] William Stallings, Cryptography and Network Security,
Prentice Hall, 2nd edition, 1999.

[2] Whitfield Diffie and Martin Hellman, “New directions in
cryptography,” Tech. Rep., Stanford University, 1976.

[3] Ç. K. Koç, “High-speed rsa implementation,” Tech. Rep.,
RSA Laboratories, 1994.

[4] A.F. Tenca and Ç.K. Koç, “A scalable architecture for mont-
gomery multiplication,” in Cryptographic Hardware and
Embedded Systems — CHES 1999, Ç.K. Koç and C. Paar,
Eds. 1999, LNCS, No. 1717, pp. 94–108, SB.

[5] Ç. K. Koç, “Rsa hardware implementation,” Tech. Rep.,
RSA Laboratories, 1996.



5

[6] E. Savas, A.F. Tenca, and Ç.K. Koç, “A scalable and unified
multiplier architecture for finite fields gf(p) and gf(2m),” in
Cryptographic Hardware and Embedded Systems — CHES
2000, Ç. K. Koç and C. Paar, Eds. 2000, LNCS, No. 1717,
pp. 281–296, SB.

[7] A.F. Tenca and Ç.K. Koç, “Word-based algorithm and scal-
able architecture for montogomery multiplicatioin,” Sub-
mitted for publishing, April 2002.


