Optimizations in the Design of Cryptographic

Hardware
M. H. Sinky

Abstract—The architectures that are used in the increas-
ingly popular area of cryptography are discussed. In the
design of cryptographic systems optimization in speed and
area are important for surpassing acceptable standards.
Many methods have been explored in the literature with
regard to optimizations in speed. Although area is not as
critical as the aforementioned constraint, it is closely related
to the speed of the hardware. Area becomes increasingly
important when implementing embedded systems. We have
proposed a design that takes into account both area and
speed resulting in a system that achieves results surpass-
ing today’s standards and may set the standard for years
to come. The CryptoKnight system has considerably out-
performed conventional cryptographic systems presented in
various literatures.

I. INTRODUCTION

As cryptography becomes more significant in contem-
porary systems and more wide-spread among users in the
general public, there arises a need for performance improve-
ments in the hardware dedicated to cryptographic systems.
Faster and smaller are two desirable characteristics in to-
day’s technology. Although speed has reached a more than
acceptable level within some systems such as the SNL DES
ASIC [1] which has the capability of achieving throughputs
of up to 6.7 Billion bits per second, we will need to con-
tinue finding ways to improve this as security is taken to
higher levels (increasing of bit strength) in order to provide
stronger protection.

A. Design

Much work has been done in the area of cryptographic
hardware and numerous design approaches have taken
place. W. P. Choi and L. M. Cheng [2] model a crypto-
processor implementing the DES algorithm in 3 forms in a
Xilinx FPGA chip. Their results have demonstrated that
modular design leads to better optimizations in the space
and speed requirements. In a comparison between a parti-
tioned model and an un-partitioned model, they show that
the partitioned model is better by 60% in area and 80%
faster in terms of speed.

The approach taken by the authors was a step-by-step
implementation of the Rapid Prototyping of Application
Specific Signal Processors (RASSP). This is a design model
that exploits top-down design, re-use and model-year de-
sign. Along with the advantages mentioned earlier, this
concept of design leads to “shorter time-to-market and
first-time silicon success fabrication” [2], both important

Author is with the Department of Electrical & Computer Engi-
neering, Oregon State University, Corvallis, Oregon 97331. E-mail:
sinkyQece.orst.edu

This work is supported by ECE 679.

industrial goals.

RASSP consists of 3 main phases: (1) Design Specifica-
tion, (2) Executable Specification, and (3) Detailed Design.
For more information about this design process the reader
may consult [2].

One of the benefits stemming from the re-use concept
of the RASSP design methodology is that it greatly sim-
plifies the modification process applied to cryptographic
algorithms. The authors use as an example the DES al-
gorithm modified to RDES and EDES. RDES is known as
Randomized-DES where the swapping of the left and right
halves of the output at each round is done randomly. Ei-
ther the two halves are swapped or not depending on a
randomly generated bit Sy:

(RnL7 RnR)
(RnRa RnL)

where S,, = Go(Rn)

EDES or Extended-DES is the same DES algorithm ex-
tended to a 96-bit plaintext and a 128-bit key size. In this
algorithm the order of the S-boxes are randomly arranged
and the key scheduling is operated on two keys resulting
from the division of the 128-bit key.

As far as RDES is concerned, all that needs to be done is
to introduce a “swap” module that performs the actions de-
scribed above. The rest of the system remains unchanged.
For EDES the modification that needs to be performed is
to increase the data block and key lengths appropriately,
and make the necessary arrangements for the order of the
S-boxes. This requires redesign of the top-level structure.
Changes in functionality need not be performed as it is only
an extension of the actual DES algorithm. It is clear that
the modular and re-use design principles play a big role in
the modification processes.

iftS, =0

(Rn-‘rl) = { ifS, =1

B. Custom Architectures

Implementation of cryptographic hardware can be cus-
tomized to execute a specific algorithm. This generally of-
fers an architecture capable of high-speed execution when
optimized. A survey put forth by Sandia National Labs
(SNL) showed that previous implementations of DES were
unable to cross the 0.5 Gbps threshold [1]. Current high-
speed networks are in the range of 1-10 Gbps, therefore pre-
vious implementations were not suitable for network packet
encryption. SNL researchers designed an ASIC (Applica-
tion Specific Integrated Circuit) tailored to network secu-
rity, using the DES architecture.

The SNL DES ASIC, which was over 10 times faster than
other available DES chips at the time, is a high-speed,

fully pipelined implementation providing encryption, de-
cryption, unique key input, or algorithm bypassing on each
clock cycle. This allows the options of encrypting, decrypt-
ing or allowing the data to pass through the ASIC with no
modification at each clock cycle.

One strong feature of the SNL DES ASIC is that it is
capable of encrypting data with one key on one clock cy-
cle, and encrypting new data with a different key on the
next clock cycle. The design can also pass user-defined
control bits in syncrhonism with the data being encrypted,
decrypted, or bypassed which is critical when dealing with
systems that need to flag data as “valid” or “not valid” in
the encryption/decryption pipeline.

Performance of the SNLL DES ASIC revealed that the
chip was able to reach 6.7 Gbps operating on 64-bit words
in ECB (Electronic Codebook) mode. Increased perfor-
mance can be achieved, as the authors pointed out, by use
of improved design tools, increasing pipeline stages, higher
performance 10 buffers, advancements in Gallium Arsenide
(GaAs) technology, and use of multiple SNL. DES ASICs.

The authors suggest that use of several ASICs in parallel
would be very substantial in performance gains. Two DES
ASICs operated using opposite clock phases could double
the data throughput to greater than 13 Gbps. For use with
Asynchronous Transfer Mode (ATM), 6 SNL DES ASICs
could operate in parallel on 64-bit blocks (384-bit payload
for ATM) obtaining 40 Gbps rates.

C. Flexible Architectures

As the design process is critical to the overall perfor-
mance of crypto-systems and ASICs are well suited for im-
plementation of high-speed devices, there are other factors
involved that need to be considered. In the case of cryp-
tographic hardware, architectures should be able to adapt
to changing or flawed algorithms. Cryptographic methods
are constantly under attack. As the cryptanalyst tries to
exploit flaws, the cryptographer attempts to improve al-
gorithms. Therefore, it is not unusual for weaknesses to
arise within cryptographic algorithms creating the need to
change or add to the implementation.

Taylor and Goldstein point out that custom hardware,
although better performance-wise than software in running
cryptographic algorithms, is not able to respond to such
changes occurring in cryptography [3]. They emphasize the
benefits of reconfigurable architectures in conjunction with
cryptographic hardware implementations. Among these
benefits are the ability to configure hardware to implement
any algorithm as well as have the implemented algorithm
highly customized. Another incentive for reconfigurable
architectures is that they also present high performance.

The authors explain that the types of functions that
work well with a reconfigurable fabric and provide signif-
icant benefits over customized hardware implementations
contain specific characteristics. Among these, are that the
function operates on bit-widths that are different from a
general purpose processor’s basic word size. Also, functions
containing data dependencies that allow multiple function
units to operate in parallel is another trait that leads to

benefits when implemented in reconfigurable architectures.
A third trait that lends itself to flexible hardwares is a
function that can be pipelined. Several other properties
are mentioned by Taylor and Goldstein [3] that make im-
plementation of the desired function feasible with reconfig-
urable fabrics.

There are generally four possible ways in which fabrics
are integrated into a system [3]. These are:

1. As an attached processor on the I/O or memory bus.
2. As a coprocessor.

3. As a functional unit on the main CPU.

4. As an on-chip-system (used for embedded computing
systems).

The system architecture employed was that of a recon-
figurable function unit (RFU) integrated into the proces-
sor. The authors used the PipeRench reconfigurable fab-
ric developed at CMU to conduct their experiments and
tests. This reconfigurable architecture has several impor-
tant characteristics. The three most important character-
istics of PipeRench in terms of cryptographic algorithms
according to [3] are: it supports hardware virtualization, it
is optimized to create pipelined datapaths for word-based
computations, and it has zero apparent configuration time.

Hardware virtualization is similar to the concept of vir-
tual memory in memory hierarchies. It allows configura-
tions larger than the size of the physical fabric to be exe-
cuted. The way this is done in PipeRench is the fabric and
configurations are structured into pipeline stages, referred
to as stripes by the authors. The stripes of a particular ap-
plication are time multiplexed onto the physical stripes of
the fabric. This provides the illusion of unlimited hardware
resources.

There are N processing elements (PEs) in each stripe
in PipeRench and each PE is composed of B identically
configured 3 input look-up-tables (3-LUTs), P B-bit pass
registers and some control logic.

One of the drawbacks of the version of PipeRench used
by the authors is that it cannot perform large table lookups.
Table lookups are generally used in place of S-boxes when
implementing cryptographic algorithms.

The authors implemented 4 cryptographic algorithms us-
ing the PipeRench reconfigurable fabric in a 0.25 micron
process, using 16 8-bit PEs, and 8 pass registers. The final
chip uses 100mm? for 28 stripes and an on-chip cache with
a capacity of 512 virtual stripes. The algorithms imple-
mented were IDEA, Crypton, RC6, and T'wofish.

IDEA

The IDEA algorithm makes use of 3 main cipher compo-
nents: addition modulo 2'6, 16-bit XOR and 16x16 multi-
plication modulo 2'¢ + 1. PipeRench is able to accommo-
date the 64-bit input and output of IDEA. When imple-
menting this algorithm in PipeRench the greatest point of
optimization and improvement lies in the multiplication.
Two ways of optimizing the multiplication operation in
IDEA are by allowing the subkeys to be constants and by

Processor Clock Speed Clocks Throughput

per Block | (MBytes/sec)

PipeRench (template) 100 MHz 6.3 126.6
PipeRench (compiler) 100 MHz 12 66.3
Pentium-1I using MMX [21] 450 MHz 358 10.0
Pentium [23] (scaled) 450 MHz 590 6.1
IDEACrypt Kernel [22] 100 MHz 3 90.0

TABLE 1

COMPARISON OF IDEA IMPLEMENTATIONS.

using a redundant coding scheme. Taylor and Goldstein try
both of these methods. When implementing the subkeys
as constants, the compiler performs constant propagation
reducing the number of partial products from 16 (general-
purpose two-operand shift-and-add multipliers) to an av-
erage of 8 per multiplier. The redundant coding scheme
implemented by transforming the shift-and-add multiplier
into a constant canonical signed digit (CSD) multiplier
yields further optimization. Table I is taken from [3] which
compares template- and compiler-generated IDEA to opti-
mized software implementations running on sate-of-the art
processors at the time, and to custom VLSI designs. The
citations within the table are the ones used by Taylor and
Goldstein and can be located by checking [3].

Crypton

The Crypton cipher posed some problems when attempt-
ing to map to PipeRench. Although most components of
the algorithm were easily transferrable, the non-linear S-
box substitution was not easy to implement. In creat-
ing the S-boxes, they are either implemented as logic or
as look-up tables. Both methods waste resources and oc-
cupy stripes in PipeRench. One round of Crypton uses
16 S-boxes where each S-box uses around 9 stripes. This
amounts to nearly 150 stripes for a single round, resulting
in a total of 1800 virtual stripes needed for the 12-round ci-
pher. Size limitations on the storage and space for virtual
stripes can place a heavy strain on PipeRench. The au-
thors suggested that the application of Crypton can be re-
pipelined to allow for re-use of the S-box in each round on
all four 32-bit words cutting the virtual pipeline by factor
of four. The resulting implementation still contains a large
number of stripes but gives 24.8 MByte/sec of throughput
compared with 18.46 MByte/sec on a 450 MHz Pentium
Pro coded with in-line assembly.

Greater improvements are made on Crypton when placed
on PipeRench+16 (original PipeRench with 1K bytes of
extra memory and capability of 16 simultaneous reads) al-
lowing the application to shrink, taking up a total of 288
stripes, and run faster at 87 MByte/sec.

RC6

The RC6 algorithm is easily implemented as a stream
cipher. The speedup over a 200 MHz Pentium Pro how-
ever is not spectacular at 4.7x. The variable rotates in the
algorithm require a big portion of hardware in order to per-
form the rotates in parallel. The multiplication in RC6 is
does not contain any constants and therefore reduces the

Crypt oBoost er
Copr ocessor

Crypt oCor e

Cypher Cor e
(encryption algorithm

Sessi on »l Sessi onheml External Session
Adapt er Menory
Sessi onCont r ol

HostInterface

I nt er f aceAdapt er

to host system

Fig. 1. Block diagram of CryptoBooster architecture.

chances of optimization. Optimization that can be done
comes from the fact that the result is only 32-bits, which
allows the size of the multiplier to be cut in half.

Twofish

As in the case of Crypton, Twofish is difficult to im-
plement due to its use of S-boxes. Parts of the algorithm
can be mapped. The four table lookups of Twofish occupy
much space but when using PipeRench to compute S-boxes
the time for key setup is actually reduced. The authors
used PipRench+4 and PipRench+16 (4 and 16 simultane-
ous reads, respectively) to implement Twofish. Each round
of Twofish makes use of rotating, XORing, addition, and
requires 16 loads. These are not a problem when realizing
in PipeRench+. Results revealed that the hand-coded ver-
sion of the algorithm in PipeRench+16 performed best at
164.7 MBytes/sec.

D. More on Flexible Architectures

As mentioned earlier, one of the methods of integrating
cryptographic algorithms into systems is by use of a copro-
cessor. This system configuration was applied by [4] in their
CryptoBooster system. The CryptoBooster is a modular
and reconfigurable cryptographic coprocessor that takes
full advantage of current high-performance reconfigurable
circuits and their partial reconfigurability. The Crypto-
Booster is interfaced with a host system (typically a PC)
and a session memory. The session memory is responsible
for storing session information where a session is charac-
terized by a set of parameters describing the cryptographic
packets, the algorithm used, the key(s), the initial vector(s)
for block chaining and other pertinent information.

The internal structure of the CryptoBooster is highly
modular. It consists of the InterfaceAdapter module which
takes care of the physical link to the host system, the
HostInterface module which is the application layer, or
software interface to the host and the SessionMem module
which allows interfacing for different types and configura-
tions of memory. Figure 1 illustrates the CryptoBooster
architecture.

As can be seen from Figure 1 the CryptoCore module is
divided into 3 parts [4]:

o CypherCore: encryption algorithm,

o SessionAdapter: session parameter management,

o SessionControl: central controller for session manage-
ment.

The modularized architecture provides the opportunity
for partial reconfiguration of the coprocessor. It is only the
CypherCore and SessionAdapter modules that need to be
modified when downloading a new design or algorithm onto
the FPGA. This feature of the CryptoBooster cuts down
on the interruption of service time.

Mosanya et. al [4] explain how the IDEA block encryp-
tion algorithm works and discuss its implementation in sev-
eral different hardware scenarios ranging from the custom
VLSI implementation VINCI and Ascom’s ASIC to some
FPGA designs. Common between all designs is the fact
that the algorithm is pipelined.

In the CryptoBooster, implementation of IDEA contains
two main properties: pipeline scalability and an associated
block chaining module. The encryption algorithm is lo-
cated on the CypherCore module and labelled IDEACore
[4].

The solution introduced by Mosanya et al [4] involves a
highly scalable IDEA pipeline which allows for selection of
the length of the pipeline to be chosen at compile time. The
default length of the pipeline follows the VINCI datapath
which is 7 pipeline stages long for one round of IDEA. The
flexibility of the datapath allows the total pipeline length
to be cut down to 4, 2, and 1 round. In the case of one
round for example, since IDEA is 8 rounds, the data must
be passed through the regular round 8 times before going
through the output round. For the normal configuration of
8 rounds, data passes once through all 8 rounds and then
to the output round.

The block-chaining aspect of IDEACore was a module
that implemented the commonly used block-chaining algo-
rithms (EBC, CBC, CFB and OFB). This adds another
piece of flexibility to applying IDEA and would also be
useful for other algorithms that use such block-chaining
techniques.

Performance results of the IDEACore CypherCore reveal
a peak performance of 200 Mbits/s for a 1-round pipeline
which fits easily into state-of-the-art FPGAs. A full-length
pipeline of 8-rounds has a throughput estimated at more
than 1500 Mbits/s, however requires a large amount of
area. Factors that affect the overall performance are ses-
sion initialization, key calculation, and the type of block-
chaining mode used. Another important factor that limits
performance is the multiplication modulo (2!¢ + 1) which
is crucial because of the area such an operation takes up
and the combinatorial delay introduced. The authors, al-
though they admit it is not the best way, used bit-parallel
multipliers. This will be a point of optimization for their
coming designs.

E. Public-Key optimizations in Cryptographic Hardware

Modern information technology such as e-commerce, pri-
vate networks, digital signatures, and secure internet makes

use of public-key cryptography (PKC) to provide secu-
rity. As the world moves more and more towards elec-
tronic means in all aspects of society, PKC becomes very
important. The brand of algorithms that implement PKC
rely heavily on long integer multiplication. As computing
power improves however, such algorithms become easier to
break in terms of brute-force means. PKC (and any well-
designed encryption cipher for that matter) is capable of
avoiding such attacks by increasing the length of the mod-
ulus. This, however creates problems in that by increas-
ing the modulus length, the encryption/decryption time of
the algorithm follows the same trend. Modern security de-
mands require that the modulus have a length of at least
1024 bits [5].

GroBischédl [5] analyzes the optimizations that can be
made in RSA’s modular arithmetic and presents design
considerations of the RSA, crypto chip.

The RSA,, crypto chip is specifically designed for high-
speed RSA encryption/decryption. The chip consists of an
interface and control unit, multiplier core and I/0 register.
These constitute the main components of the system. The
performance of the chip mainly relies on the efficiency of
the modular arithmetic, therefore it is the multiplier core
that is discussed further in more detail.

As [5] explains, two main algorithms are preferred for
hardware implementation of modular multiplication: the
Montgomery algorithm and the Barrett modular reduction
method. RSA, uses an optimized version of Barrett’s mod-
ular reduction method named FastMM algorithm. The way
the reduction works is that it replaces the integer division
(when computing a modulus) with a multiplication due to
the fact that division is very costly.

Z mod N = LiJ NZquithq{J [5]
——

replaced

The replacement of ¢ is §:

i Uzm LQL"JJ -

= 2n+1

As GroBschidl points out the divisions by 27! and 27*!
are done by simply truncating the least significant n — 1
or n+ 1 bits of the operands whereas the expression LQ;LJ
only depends on mod N, which would remain constant as
long as the modulus does not change. The modification
performed to produce the FastMM algorithm was to have
the truncations be applied at multiples of the word-size w
of the multiplier hardware (usually 16 or 32 bits):

i UQJLUNJJ 5)

This was to allow for more natural operations given the
word size. Following the above equations, when modular
reduction is performed, the result may not be fully reduced.

For this reason equation (1) is combined with three mul-
tiplications to implement the modular multiplication ac-
cording to the formulas explained in [5] to obtain the final
result although there may be some error introduced due to
an inaccurate approximation of 227;\/%

Grofischédl further discusses the physical architecture of
the multiplier used in implementing the FastMM algorithm.
The RSA, prototype is optimized for n = 1024, there-
fore the multiplier core has the dimensions (n + 2w) x w =
1056 * 16 bits. One of the more important optimizations
implemented in the hardware is the use of Modified Booth
Recoding which reduces the number of partial products re-
quired in computation in half.

Performance results of the RSA, crypto chip with a mod-
ulus length of n = 1024 and a word-size w = 16 give a
decryption rate of 560 kbit/s where the multiplier core is
clocked at 200 MHz (227 clock cycles for n = 1024). Use
of the Chinese Remainder Theorem speeds up the decryp-
tion to 2 Mbits/s. The area of the multiplier core occupies
70 mm? and contains around 10° transistors. Overall, per-
formance results show the efficiency of the hardware algo-
rithms implemented and the multiplier architecture.

II. THE CRYPTOKNIGHT SYSTEM

The design of our system encapsulates what has been dis-
cussed in the previous section and extracts the advantages
proposed in the preceding designs. The CryptoKnight sys-
tem resides on an ASIC fabricated by the semiconductor
group at Oregon State University. The die is 2 X 2 mm
making it more than ideal for embedded systems. The
chip applies the Rijndael algorithm using a key length of
128 bits (requiring 149 trillion years to break given a ma-
chine capable of cracking DES in one second). We chose
Rijndael because it has just recently been selected as the
standard of choice and will remain secure for at least the
next 20 years given there is no breakthrough on cracking
the algorithm.

A. The Algorithm

We start off with a brief overview of the Rijndael algo-
rithm. Rijndael consists of 10 rounds where each round
involves the implementation of specific steps known as lay-
ers. The four basic layers are:

The ByteSub (BS) Transformation.

The ShiftRow (SR) Transformation.

The MixColumn (MC) Transformation.
The AddRoundKey (ARK) Transformation.

Ll

Rijndael operates on the input bits by grouping them
into 16 bytes and arranging those bytes into a 4 x 4 ar-
ray. The BS transformation basically substitutes each byte
in a matrix by another byte using an S-box for this pro-
cess. The SR transformation shifts the rows of a matrix
to the left (cyclically) by offsets of 0, 1, 2, and 3. The
MC transformation takes a matrix and multiplies each col-
umn of the matrix by a fixed ploynomial within the same
field and reduces by modulo z* + 1. This polynomial is

~

+><» ARK
2

128 1

N
s

Fig. 2. Basic Modules within the CryptoKnight Chip.

a(z) = {03}23 + {01}22 + {01}z + {02}. Finally, the ARK
transformation takes the round key (derived from the orig-
inal key) and XORs it with the output of the MC step.

Key scheduling in Rijndael involves expanding the orig-
inal 128 bit key by 40 more columns which are generated
recursively based on the four columns of the key. These 40
extra columns are used to construct the keys for the last
ten rounds of the algorithm. The key scheduling involves
XORing, shifting, and computation of a round constant
(r(i) = 00000010¢~=4/4 for the ith round).

Rijndael Encryption makes use of the layers described
above by using ARK for the zeroth round then BS, SR,
MC, and ARK through rounds 1-9 (using the round key for
each corresponding round). The final round goes through
BS, SR, and ARK using the 10th round key.

Further details about Rijndael which is now the Ad-
vanced Encryption Standard can be found in [6].

B. Chip Design

The ASIC design implemented was constructed using one
module per layer. The modules BS, SR, and MC each have
one input, OP (aside from the data), that signifies either
encryption or decryption. A value of 1 for OP makes those
modules function in their normal manner, a value of 0 sig-
nifies decryption setting the modules BS, SR, and MC to
invert their operation. The datapath as can be seen in Fig-
ure 2 is 128 bits wide. A counter array is used to determine
the current round for an encryption or decryption opera-
tion and the system operates using a 4 stage pipeline. Data
blocks which are matrices in the case of the Rijndael algo-
rithm are tagged as up to 4 blocks can be in the pipeline at
once. Comparators check to see which phase the encryp-
tion or decryption process is in (zeroth round, rounds 1-9,
or last round).

Although the CryptoKnight system resides on an ASIC,
it does exhibit some flexibility with regard to Rijndael. The
number of rounds to execute can be defined by the user.
The default is 10 rounds, and the maximum number of
rounds is 32 defined by the input to the counter.

The algorithm is easily transferable to an FPGA allowing
for certain flexibilities with regard to the implementation.
This can accommodate for maintenance or changes to the
AES algorithm that may occur in the future.

Operating on a 1 GHz clock the CryptoKnight system is
capable of achieving throughputs of up to 200 Gbps. By op-
erating the chips in parallel, this can be doubled or tripled
depending on how many are used. Table II illustrates that

of chips | Throughput
1 200 Gbps
2 400 Gbps
3 600 Gbps
4 800 Gbps
o0 oo Gbps
TABLE II

POSSIBLE THROUGHPUTS OF OPERATING CRYPTOKNIGHT IN
PARALLEL.

by using an unlimited number of chips, an infinite amount
of data would be processed in a second.

C. Optimizations within CryptoKnight

The reason the chip size is quite small in comparison to
other on-chip crypto-systems has much to do with the ad-
vances made by the Oregon State University semiconduc-
tor group. They have shrunk processes down to .5 nano-
technology which is extremely advanced. OSU now leads
the world in this area of expertise. These advances have
allowed the KryptoNight ASIC to total 4mm? in dimension
which surpasses the area of any stand-alone cryptographic
chip.

Further optimizations that allow for a smaller design are
that the S-boxes are provided via a wireless method, i.e.
they do not reside on-chip. Since such parts of crypto-
graphic algorithms are known to the public this does not
compromise the security of AES in any way. A separate
ROM holds the S-box values and communicates remotely
with the chip.

The modular design of Rijndael used in the Cryp-
toKnight system reduces the total area that would be
needed. As in the case of the FPGA Design of DES in
[2] this proved to be a useful way of cutting down area re-
quirements and simplifying the overall system. If changes
occur in AES in the near future, only the corresponding
module needs to be addressed.

The contributions to speed within CryptoKnight are
closely related to the technology used as they allow for ex-
tremely high-speed interconnects for use in the integrated
circuit. In comparison to Pentium 4 interconnects, the
CryptoKnight is 100 times faster as is shown in Figure 3.
This allows for extremely fast execution within each in-
dividual module. Also, The MixColumn transformation
involves arithmetic computations modulo z* + 1. The GF
Optimization Method (GOM) is used to speed up the pro-
cess allowing such polynomial arithmetic operations to be
calculated in less than a picosecond.

CryptoKnight also has very desirable power consump-
tion running at 1/2 milliwatt. This is remarkable given the
clock is running at 1GHz. Power management techniques
are implemented through the use of the new ice-blocks lo-
cated within the die. These are placed at the corners of
the chip and keep the balance level such that the chip does

120

100

80 \
60

40

20

Speedup over Pentium 4 Interconnect

Process (nm)

Fig. 3. The speedup of CryptoKnight interconnects compared to
Pentium 4.

not exceed maximum power capabilities. This allows the
chip to operate for an indefinite amount of time making it
well-suited for embedded systems.

III. CONCLUSION

As we move more towards mobile technologies and wire-
less systems, cryptography increases in importance. Effec-
tive cryptographic systems are required to allow for such
advances in technology. Since the embedded system is in-
creasing in popularity, researchers have focused towards
improvements in the speed and area of cryptographic sys-
tems. Such improvements will need to be made to be
able to fully incorporate cryptography with mobile and em-
bedded systems. Our proposed system, CyptoKnight has
proven to be an elite candidate for such future needs.

Further research and testing is currently being conducted
in designing CryptoKnight2K5, the next in the line of
CryptoKnight processors. We are attempting to incorpo-
rate quantum computing to further increase speed and re-
duce area such that the chip will not even be physically
seen. Current obstacles are the unpredictability of quan-
tum states, and 4th dimension interference with data in-
tegrity.

REFERENCES

[1] D. C. Wilcox, L. G. Pierson, P. J. Robertson, E. L. Witzke, and
K. Gass, “A DES ASIC suitable for network encryption at 10
gps and beyond,” in Cryptographic Hardware and Embedded Sys-
tems - CHES 1999, C. K. Kog and C. Paar, Eds. 1999, Lecture
Notes in Computer Science No. 1717, pp. 3748, Springer, Berlin,
Germany.

[2] W. P. Choi and L. M. Cheng, “Modeling the crypto-processor
from design to synthesis,” in Cryptographic Hardware and Em-
bedded Systems - CHES 1999, C. K. Kog and C. Paar, Eds. 1999,
Lecture Notes in Computer Science No. 1717, pp. 25-36, Springer,
Berlin, Germany.

[3] R. R. Taylor and S. C. Goldstein, “A high-performance flexible
architecture for cryptography,” in Cryptographic Hardware and
Embedded Systems - CHES 1999, C. K. Kog and C. Paar, Eds.
1999, Lecture Notes in Computer Science No. 1717, pp. 231-245,
Springer, Berlin, Germany.

[4] E. Mosanya, C. Teuscher, H. F. Restrepo, P. Galley, and
E. Sanchez, “CryptoBooster: A reconfigurable and modular cryp-
tograpic coprocessor,” in Cryptographic Hardware and Embedded
Systems - CHES 1999, C. K. Ko¢ and C. Paar, Eds. 1999, Lec-

ture Notes in Computer Science No. 1717, pp. 246-256, Springer,
Berlin, Germany.

J. Grofischdadl, “High-speed RSA hardware based on barrett’s
modular reduction method,” in Cryptographic Hardware and
Embedded Systems - CHES 2000, C. K. Kog and C. Paar, Eds.
2000, Lecture Notes in Computer Science No. 1965, pp. 192-204,
Springer, Berlin, Germany.

National Institute of Standards and Technology (NIST). Ad-
vanced Encryption Standard (AES)., “Federal information pro-
cessing standards (FIPS) publication 197,” November 2001,
Available for download at http://csrc.nist.gov/encryption.

