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Abstract— Public key cryptography gained increasing attention RSA was widely used by the manufacturers of the micro-
from both companies and the end users who wish to use this controllers of smart cards. However, the computational power
emerging technology to secularize a wide variety of applications. ¢ smart cards is very limited and the on-card implementations
A major consequence of this trend has been the growing signifi- .
cance of the public-key smart cards. A smart card is a tiny secure are much slower than that on desktops. This payed a way to
cryptoprocessor embedded within a credit card-sized or smaller for high-end smart card controllers to have special hardware,
(like the GSM SIM) card which provide encryption, decryption called a crypto-coprocessor [1]. The crypto-coprocessor is a
as well a? keydgenerattion' Witlhin it’f Segll_lfit)li perimetter- R?]A specialized circuitry that is able to perform fast modular expo-
IS a Simple and eas 0 Implemen ublic Key cr ograpnic HA H H H :
algorithmF.) Today RSX keys Fange frofr’n o bi);s tgp20%8 pbits nentiation which inturn accelerates encryption and decryption
and some bodies envision 4096-bit RSA keys in near future. In _Of pUb_I'C key cryptographic glg_onthr_ns that use the computing
this paper, | will present a study of efficient algorithms involved intensive modular exponentiation, like RSA.RSA key genera-
in on-board RSA key generation. tion depends upon the efficient generation of prime numbers
quick and correct. This paper describes some efficient prime
generation algorithms and prime number testing algorithm that
are relatively fast.

It has been said that smart cards will one day be as importanfThe rest of this paper is organized as follows. Section
as computers are today. This statement contains a bit of largives a brief introduction to RSA cryptosystem - RSA
error because it implies that smart cards are not computealgorithm and RSA key generation. Section Il highlights the
when in fact, they are. A smart card - a type of chip card - [gime number generation. This section also outlines various
a plastic card embedded with a computer chip that stores gimality and compositeness tests. Prime generation algo-
transacts data between users. This data is associated with eititlems are listed out in Section IV. Efficient prime number
value or information or both and is stored and processed wittgeneration algorithms are described in this section. Section V
the card’s chip, either a memory or microprocessor. The caalks about a new method of generating RSA keys - On-board
data is transacted via a reader that is part of a computing sikey generation. An algorithm to describe the working of this
tem. Smart card-enhanced systems are in use today througky generation is mentioned. This paper is concluded with the
out several key applications, including healthcare, bankingcknowledgements and a conclusion finally.
entertainment and transportation. To various degrees, all ap-
plications can benefit from the added features and security II. RSA CRYPTOSYSTEM
that smart cards provide.Because smart cards are indeed ti”PﬁSA, named after its inventors Rivest, Shamir and Adleman,

compl_Jters, it's ('jifficullt to predjct the variety,of a_pplicatiqn§s the most widely deployed public-key cryptosystem. It is
that will be p055|ble_ with them in the future. It's quite _possmlﬁsed for both public key encryption and digital signatures. The
that smart cards will follow the same trend of rapid increas@g ity of RSA relies on the integer factorization of integers.
in processing power that computers have, following "Moore’s
Law” and doubling in performance while halving in cost every )

eighteen months. Smart cards have proven to be quite usefuftadtSA Algorithm

a transaction/authorization/identification medium in European Two large primeg andq are chosen by the each individual
countries. As their capabilities grow, they could become thuser and the produdV = pq is published [2] . Next, each
ultimate thin client, eventually replacing all of the things weiser chooses a public exponenthat is relatively prime to
carry around in our wallets, including credit cards, license — 1) and (¢ — 1). Finally, each user computes the secret
cash, and even family photographs. (The photographs co@kponentd according to

be viewed and/or exchanged by capable terminals or personal _

computers.) By containing various identification certificates, ed = (mod(lem(p = 1,4 = 1))
smart cards could be used to voluntarily identify attributéBhe public parameters aréV(e) while the secret parameters
of ourselves no matter where we are or to which computare f,q,d). To send a messag&/ to Bob, Alice locates
network we are attached. Bob’s name in the directory and obtains his public keyN)

I. INTRODUCTION



and computes the cipher text = M¢(modN). Next, to Method fall in this category. Compositeness test declares
recover the plain textV , Bob uses his private exponentwhether a number is composite with a probability 1 or prime
and the modulus , and computdd = C°(modN). RSA with probability j 1. Fermat test, Solovay-Strassen test and
algorithm provides a procedure for signing a digital documeritliller-Rabin test fall under this category. Sieve of Eratos-
and verifying whether the signature is indeed authentic. thenes was the first known means to test for primality and
digital signature cannot be a constant; it is a function of the factorize numbers. It simply verifies the divisibility of the
document for which it was produced. Suppose Alice wants tumbern to test by all the primes starting from 2 tgn.
sign a message, and Bob would like to obtain a proof that thisis practically unthinkable to use this kind of algorithm
message is indeed signed by Alice. Alice takes the messdge generating primes as large as the ones used in RSA key
M , uses her secret key and computes= M?(modN). generation. Modular Search Method has excellent execution
Next, she sendd/ and .S to Bob. Then Bob can verify that time when using an arithmatic processo but the memory space
S corresponds to Alice’'s signature on the messddeby needed to store the numbers appears dissuasive, in particular
checking whetherS¢(modN) = M where e is the public on smart cards where memory is subjected to strong size
exponent of Alice. Otherwise, either the original message constraint.
or the signatures is modified, thus, the signature is not valid. Compositeness test also called probabilistic primality tests
seems to be much faster than primality tests. A number
B. RSA Key Generation is a prime number with a high probability if it passes a
As mentioned in the above section, RSA keys is a pair pfobabilistic primality certain number of times.In the next sec-
matching public/private keys.RSA uses a key for encryptidion, we will see many different prime generation algorithms.
that is different from the decryption key. The key generatioho improve the speed of generating large prime numbers
requires two prime® andgq so that it is possible to use some properties of numbers to build
()(p—1) and ¢ — 1) are co-prime to public componeatand probabilistic tests such that all prime numbers pass the tests
(i) N = pq is exactly anl bit integer, wherd is the bit length and the other ones pass with a probability
of N.
The drawback in this approach is the running time which is th¢ Fermat Test
most expensive operation in generating these keys. Anothe
solution consists in pre-computing values fprand ¢ for : ) ) i
various pairs ¢, /) and to store those values in a non-volatil& e Primen and base a rglatwe_ly prime with.Hence the
memory of crypto-coprocessor. Non-volatile memory is th%Igorlthm for the test goes like this
drawback here as it is more expensive.Using very efficiertt: fori =1 to ¢
algorithms, 1024 bit modulud” along withd can be generated 2: Choose randomly with 2 < a <n — 2

I:I'he (little) fermat theorem says that—! = 1modn ,for

in few seconds on current smart cards. 3: r=a"" ! modn
4: if r # 1 return composite
I1l. PRIME NUMBER GENERATION 5. endfor

The generation of prime numbers underlies the use of th@ returnn prime
most public-key schemes, essentially as a major primitive , , )
needed for the creation of key pairs or as a computatigh€r® exist composite numbers always passing Fermat's
stage appearing during various cryptographic setups. Despiggudo-primality test called Carmichael Numbers [4].
decades of intense mathematical studies on primality testing
and an observed progressive intensification of cryptograpltic Solovay-Strassen Test
usages, prime number generation algorithms remain scarcelytne test is a further improvement of Fermat's test.
investigated. Common generators typically require*) or
O(n*/logn) bit operations where is the bit-length of the ex- a"™ /2 = (a/n)modn
Fhe(f[ted Erltmet_nllfmbe(; [3]- Ir?us’ tlhere }Stﬁ nehe_gldfor algontth%ere @/n) is Jacobi Symbol. The probability for a composite
at substantially reduce the vajue ol the hidden cons arﬁﬁ’mber to pass this test is less thpft if ¢ is the number
there_fore proyldmg much more efn(_:le_nt prime generatlogf randomly chosen base [4].
algorithms. It is also necessary to optimize the peformance of
the algorithm used for finding large primes in order to optimize
the performance of the algorithm for generating the RSR. Miller-Rabin Test
key pair [3]. For RSA, it is very important to choose prime Miller-Rabin test is further more simple and easy to imple-
numbersp andq forming the modulusV = pq randomly and ment test than the previous ones. This is a primality test that
as large as possible. RSA based on the difficulty to factoripeovides an efficient probabilistic algorithm for determining
the modulusn also means that someone will not be able tid a given number is prime. It is based on the properties
infer the primeg andgq by another way than the factorization.of strong pseudoprimes. The algorithm proceeds as follows.
Given an odd integen, let n = 2"s + 1 with s odd. Then
A. Primality and Compositeness Tests choose a random integerwith 1 < a < n — 1. If a® =
Primality tests declare whether a number is prime witbr a*’* = —1(modn) for some0 < j < r — 1, thenn passes
probability with 1. Sieve of Eratosthenes and Modular Searthe test. A prime will pass the test for all The test is very



fast and requires no more thah+ o(1) log n) multiplications 2) Naive prime finding algorithmThe naive prime gener-
(mod n), wherelog is the logarithm base 2. Unfortunately, aation algorithm is sketched in the following table. Neglecting
number which passes the test is not necessarily prime. Montefls to the random number generator, the expected number os
and Rabin have shown that a composite number passes tti@s here is asymptotically equal tbn@™/2). 89 trials are

test for at most 1/4 of the possible baseslf N multiple required to generate a 256 prime number. A naive approach
independent tests are performed on a composite number, tteefind an n bit prime number is to randomly choose a b bit
the probability that it passes each test jg4” or less [4]. The odd number and call a compositeness test funcfionsing
algorithm (. odd) is shown below. the odd number as input. If the functighreturns the result
that the number is not a prime, another random number is

L f|nd't andg such thatn = 2'q + 1 chosen and the procedure of testing it with a function is
2. fori = ltot , repeated until a prime number is found, which would the prime
3: choose randomly with 2 < a <n —2 used for key generation. Hence, the implementation of the
4w - amodn primality test functionf must be optimized and the numbers
>: ',f (z#1) of tests (number of calls tg) should be minimum in order
6 =l , to optimize the performance of the prime finding algorithm
16 while (v #n —1) do [3]. Table 1 below describes the algorithm clearly. THey)

8: (i = t)Zreturn composite functioin mentioned in the algorithm is nothing but the test of
9: r=u mod n _ primality.

10: if(x = 1) return composite

11: i++ Table:1 Naive Prime Finding Algorithm

g er:edr;;jwhlle 1. pick a random: — bit odd numbery

14: endfor 2. if T'(q) = false then goto 1

15: returnn pseudo-prime 3. outputg

3) Sieve of Eratosethenehe sieve of eratosethenes was
the first known means to test for primality and to factorize
E. Primality testing with Elliptic Curves numbers. It verifies the divisibility of the number to test
Ry all primes starting from 2 tq/n. It is very fast with the
first small primes but its computation time essentially grows
linearly with n. Sieve is always used to rapidly eliminate the
ndomly chosen prime candidates having very small factors.
he functionQ(z) whereP, is the set of all primes< « may
be defined a§)(x) = II,cp, (1—1/p) [5]. For an larger than
x, this function may be interpreted as the probability foto
ybe relatively prime with all primes irP,. Practically, a sieve
can be implemented by evaluating the GCD of the product
all the elements of?, with the numbem to test.Table 2 lists
out the algorithm for this test. The functid(k) is the set of
é)rime numbers.

Let n be a suspected prime. If it is really a prime, the
|E(a,b)/n| lies in the interval(n + 1 — 2y/n,n + 1 +
24/n).Furthermore, it is known that if. is prime,then there
are always many elements of high order. If we can fact
|E(a,b)/n|, say|E(a,b)/n| = ¢{*x...xq%", then we choose
a point P = (Xo,Yy z,) at random and find its order. The
order must be divisor dfF'(a, b) /n| and hence we can start b
verifying P#(|E(a, b)/n|/q;) for eachi. If then Z coordinate
is relatively prime ton for eachi and if n divides the Z
coordinate ofP#|F(a, b)/n|, then the order of in E(a,b)/p
is|E(a,b)/n| > n+1—2+/n for any primep dividing n which
implies thatn is prime. There is still hope even if one or mor
of the Z coordintes is divisible by.. For each such, we find Table:2 Sieve of Eratosethenes
the smallest positive integét, such that theZ coordinate of

1. Let p; be thei — th smallest

|E(a,b)/n| odd prime $1=3, p2=5,...)

T) 2. Let S(k) be a set of prime small prime such that
’ S(k) = (pilpi < k,i € N), wherek can be

is relatively prime ton. any positive integer.

3. For a given numbey, divide ¢ by all

the elements irb (k)

4. If ¢ is not divisible by all the elements in

S(k), q is said to survive the sieve.

Otherwiseq is said to fail the sieve

i.e ¢ is a composite number.

P#(

IV. PRIME GENERATION ALGORITHMS

1) Generating RSA PrimesThis is a simple algorithmic
outline to generate RSA primes. 1. Pick kabit odd m
uniformly at random from#z/2,m] 2. Apply test division on
m by all primes less than a certain small prime 3uifpasses  4) Prime finding algorithm using trial divisionOne of the
trial division test, then apply the (strong) pseudoprimality testost used sieve methods is the trial division method. If we
for r different bases 2, 3, 5, 7... 4. #h passes all- (strong) are given an integer less than a million, we can find its prime
pseudoprimality tests, factors fairly quickly just by using the fact that if it is not
thenm is a prime number with high probability 5. h fails, a prime, then it must have a factor less than its square root.
takem := m + 2gotoStep2 Thus, take a list of all primes and try dividing them into the




number to be factored. If none of them divide evenly, then tlemother odd; and letq(®) = ¢~ 4 2. Table 5 describes the
original number was prime. Each time we find a prime divisoalgorithm [5].

we divide it out. Once the unfactored portion that remains is

less than the square of the last prime tested, it can be known  Table:5 Prime finding algorithm using bit array

e rictred poten s b prine 51 T A0 gz, =<7
2. Pick an — bit odd random numbey and letgy=g, i=0
Table:3 Prime finding algorithm using trial division 3. For eaclp; € S(k), do
3.1 Computew9=¢(®) mod p;
1. Choose a sef (k). Pick an — bit odd 3.2 Computeg(pj)
random numb}eq and letg)=q, i=0 3.3 Setay(y,)1m = 1,0 <m < [(1 — g(p;))/pj]
2. Letw];,=¢") modp;. 4. fori:=0tol —1, do
If w;, =0, for anyj, 4.1 If (a;=0) andT'(¢V)= true, outputg® and halt.
1<j <k, goto 4 4.2 ¢t =¢()42
3. If T(¢')= TRUE, outputg’ and halt. 4.3 ¢("=¢(y), i=0, goto 3
4, ¢ tl=¢'+2,i:=1+1, goto 2

5) Prime finding algorithm using table look-uhe mod-
ular reductions are very expensive. Hence, it is desirable to
keep the number of modular reduction operations on the sieve
procedure to minimum. The modular reduction in trial division Onboard key generation is preferable as the keys are not
algorithm is shown in Table 3. Although modular reductiofmPosed by the card manufacturer. This is a new method
can be used to compute, there is an efficient way to improve Suggested by FJ[1] for the generation of RSA keys. This
it. If giy1=qi+2 andw§:qi mod p, thenw;“: w§+ 2 modp. algorithm is (_j|V|ded into two phases. The first phase is
Finally, one can calculat&;’;“ from w§ In addition, ifp; is performed offline before the values ¢f ¢) are even known.

assumed to be 8-bits long, soﬁg'.. So the computation of The second phase is performed online by the cryptographic

device once(l,e) are known. This method is supposed to

i+1 _hi e
w;"" only uses two 8-bit operands, resulting in a performan%ee very fast when compared any other method of RSA key

much faster than modular reduction operations. The algorithrre1neration [6]
is described in Table 4 [5]. 9 :

V. ONBOARD GENERATION

Table:4 Prime finding algorithm using table look-u
gayg g P Table:6 Onboard RSA prime generation algorithm

1. Choose a sef (k). Pick an — bit odd random numbeg Input: parametery, e anda (of large order) inZx

and letg()=g, i=0 Output: a primegin |[2lo—1/2] 2l — 1

2. Computew?;=¢® modp;,1 <j <k

3. If ng);o, foranyj, 1 <j g k, goto 5 1. Computev — [[210—1/2]] andw — L&J

4. 1f _T(q(l))zTRUE, outputg* and halt 2. randomly choosg € R v, ...,w — 1 and setl — jr

5wl = w4 2modp;,1 < j <k 3. randomly choosé € R Z:

6. ¢"tV=¢(D+2, i=i+1, goto 3 4. Setq — k+1

The algorithm requires a tableo[, ws, ...] to keep all the | > If (¢ is not prime) or(ged(e, ¢ — 1) # 1) then
residuesw? of the previous iteration. Hence, this algorithm is g; gittlga;(emoiﬂ
referred to as table look-up algorithm. ' P

6. Outputq

6) Prime finding algorithm using bit arraytet us consider
the intervalofl test candidates, say®, ¢V, ..., ¢~ A bit The prime produced by this algorithm has the form of
array A is defined asdpa;...a;—1] wherea; is thei —th bit, ¢ = afflkz(o) mod 7 + jm where k) denotes the initial
initially set to 0 witha, representing the numbef”).For each value of k and f is the number of failures of the test in
prime p from the setS(k), we find a starting poing(p) = Step 5 [7].Memory requirements are reduced radically if
min(ilq') is divisible byp, i € N. If g(p) is less tharl, set bit prime ¢ can be stored as a paiti, f) wherei is a
a;(p to land then every — th bit of A is set to 1 since the unique indexed identifieri(is used as the input of a pseudo
values ofa that are represented by these bits would also bandom number generator for constructingw, j, k(o)) This
divisible by p. After this sieveg; is zero if and only if¢” is phase is performed offline. Then the online stage consists in
not divisible by any of the numbers ifi(k).The sieve is then reconstructing primes from pairs, (). Moreover, in addition
concluded and the prime finding algorithm must only scan the be a fast, this method allows the online generation of RSA
bit array A and try the primality tes” for eachq(® such modulii N = pq of arbitrary length from a very small set of
that a; is zero. This algorithm is called bit array algorithmvalues computed at the offline phase.Furthermore, parameters
The bit array algorithm will find a probable prime if ther iscan be chosen so that keys are guarenteed to work for the
one in the chosen interval.In the case that there is no probabsaal public exponent which is usually let at the discretion
prime on the chosen interval, once can either randomly choaxfethe end user [7].
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VII. CONCLUSION

A basis for understanding the key generation on smart cards
is presented in this paper. Time constraint in generating RSA
keys on smart cards is clearly pointed and algorithms that can
optimize the amount of time required to generate the keys
on smart cards are highlighted. Most of these algorithms are
implemented with varying results. There are several factors
that must be taken into account when designing cryptographic
algorithms for smart cards. There are several other algorithms
that can efficiently generate RSA key pairs but they couldn’t
overcome the specified constraint on the smart cards. At
present, a cheaper but effective solution may be to have an
on-board key generation. So, sets of keys will be generated
only if they will be used. Furthermore, they is more memory
available and this method is more secure as private keys are
only owned by the end user. Recent study shows that on-board
generation takes few seconds on an average. Larger key sizes
present new challenges since smart card crypto coprocessor
have fixed register sizes that will not be able to accommodate
large numbers. Elliptic Curve Cryptography(ECC) can provide
the same level of security using smaller RSA key lengths.
A future work would be the designing of key generation
algorithms using the Elliptic Curve Cryptography.
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