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Abstract— In this paper we are presenting an ef-
ficient algorithm and architecture for Montgomery
multiplication. This algorithm is derived from a
Scalable high radix Montgomery Multiplication al-
gorithm presented and proved to be correct in [1].
Radix-4 is widely used in arithmetic, and so we are
presenting a radix-4 based scalable algorithm. Scal-
able means that a fixed-area multiplication module
can handle operands of any size. In this design
we applied a pipelining methodology to utilize the
concurrency in Montgomery Multiplication oper-
ation. In order to reduce the delay a design for
radix-8 was presented in 2001. Although on one
side this design reduces the delay significantly, on
the other side the design area increases. In addition
to exploring reconfigurable hardware techniques to
implement the Montgomery Multiplier under dis-
cussion we explore other techniques to get around
the area problems of a radix-8 design. The word-
by-word algorithm used in the multiplier gives de-
signer the freedom to select the level of parallelism
according to the available area. Experimental re-
sults are shown to demonstrate that the proposed
radix-4 Montgomery Multiplier design has better
area/performance tradeoff than previous radix-2
and 8 scalable designs.

Keywords—Modular Multiplier, Scalable Archi-
tecture, Cryptography, Montgomery Multiplica-
tion.

I. Introduction

Modular arithmetic operations (i.e., addition,
multiplication and inversion) are used in several
cryptographic applications, such as decipherment
operation of RSA algorithm [2], Diffie-Hellman key
exchange algorithm [3], elliptic curve cryptography
[4], and the Digital Signature Standard including
the Elliptic Curve Digital Signature Algorithm [5].
The most important of these three arithmetic oper-
ations is the modular multiplication operation since
it is the core operation in many cryptographic func-
tions.
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Given the increasing demands on secure commu-
nications, cryptographic algorithms will be embed-
ded in almost every application involving exchange
of information. Some of these applications, such
as smart cards [6] and hand-helds, require hard-
ware restricted in area and power resources [7]. An
efficient algorithm to implement modular multipli-
cation is the Montgomery Multiplication algorithm
[8], and it has many advantages over ordinary mod-
ular multiplication algorithms. The main advan-
tage is that the division step in taking the modulus
is replaced by shift operations which are easy to
implement in hardware [7].

Cryptographic applications use large number of
bits in order to be considered secure. Some of these
applications use 256-bit precision operands, others
use larger precision, up to 2048 or 4096, as in some
exponentiation-based cryptographic applications.

Many of the proposed designs are fixed-precision
[9] which uses operands of fixed size. Other designs
are scalable [10], [1], and can take operands with
an arbitrary precision. An important factor that
should be taken into consideration is the area/time
tradeoff [11]. In general the fastest design is better,
but most of the fast designs use large area and more
complicated logic.

II. Different Multipliers and Implementations

The scalability feature of the Montgomery Multi-
plier under discussion makes it ideal for FPGA im-
plementations. An increase of change in the word
size for a particular system simply requires recon-
figuring the system with the appropriate number of
replicated multiplier modules. Three types of mul-
tipliers that are considered in cryptographic sys-
tems are:
• General-purpose
• Multiplication by a constant
• Multiplication using a redundant coding scheme

The general-purpose multiplier is the most ex-
pensive to implement in that the operands can as-
sume any value. In the realm of cryptography, how-
ever, a multiplication of n×n generally requires a re-
sult of only n bits wide [12] which is how the Mont-
gomery Multiplier should be used within a crypto-
graphic application, ignoring the unnecessary bits
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and thus avoiding extra hardware for implementa-
tion. This is the first optimization that may be ex-
ploited in hardware implementations whether they
be reconfigurable architectures or ASIC designs.

The second instance of a multiplier is where one
of the operands is a constant which is again com-
mon in cryptographic applications. In hardware,
such multipliers can be made considerably smaller
and faster than general-purpose multipliers. “On
average, single-operand multipliers of this type are
half the size and twice as fast as their general-
purpose counterparts [12].” The implementation of
our Montgomery Multiplier combined with the op-
timizations of a constant operand can yield signifi-
cant gains.

The final form of multipliers listed, is one that
makes use of a redundant coding scheme. Again
this provides gains as it reduces the number of par-
tial products required to compute the result. The
Montgomery multiplier under discussion exhibits
this technique. This provides considerable gains
when compared to general purpose multipliers.

III. Digit Multipliers And Their Complexity

In order to get improved performance, high-radix
algorithms have been proposed[1]. However, these
high-radix algorithms usually are more complex
and consume significant amounts of chip area, and
it is not so evident whether the complex circuits
derived from them provide the desired speed in-
crease. The increase in the radix; forces the use of
digit multipliers, and therefore more complex de-
signs and longer clock cycle times are required. For
this reason, low-radix designs are usually more at-
tractive for hardware implementation.

Early modular multiplication designs treated
radix-2, radix-8 separately at a gate level. With
rapidly advancing technology, these have to be re-
placed by the generic radix-r, which is now essen-
tial for a better understanding of the general princi-
ples, for modular approach to design and for select-
ing from parameterized designs for optimal use of
available chip area. Today’s embedded cryptosys-
tems are already using off-the-shelf 32-bit multipli-
ers[13]. These r × r multipliers form the digit-by-
digit products.

Of course, there is an immediate trade-off be-
tween time and area. Doubling the number of digit
multipliers in a cryptographic co-processor allows
the parallel processing of twice the digits and thus
reduces the time taken by half. This does not con-
tradict the Area × Time2 measure being constant
for non-pipelined multipliers, although it appears
to require less area than expected for the speed-up
achieved. This indicates that choosing the largest
radix possible for the given silicon area may not
be the best policy; a pipelined multiplier or sev-

eral rows of smaller multipliers may yield better
throughput for a given area.

IV. Scalability

Many designs for Montgomery Multiplication
were proposed. Some of these designs used a full
precision arithmetic modules which resulted in lim-
iting the design to a fixed degree. So, we need
to design a scalable architecture which uses mod-
ules with the scalability property. Scalability of an
arithmetic unit means that this unit can be reused
or replicated in order to generate long precision re-
sults independently of the data path precision for
which the unit was originally designed. When a
need for a multiplication of larger precision arises,a
new multiplier must be designed. Another way to
avoid redesigning the module is to use software
implementations and fixed precision multipliers.
However, software implementations are inefficient
in utilizing inherent concurrency of the multiplica-
tion because of the inconvenient pipeline structure
of the microprocessors being used. Furthermore,
software implementations on fixed digit multipliers
are more complex and require excessive amount of
effort in coding. Therefore, a scalable hardware
module specifically tailored to take advantage of
the concurrency of the Montgomery multiplication
algorithm becomes extremely attractive. For ex-
ample, we can reuse or replicate these modules in
order to generate long-precision results indepen-
dently of the data path precision for which the
module was originally designed[10]. Some of the
proposed designs work on a certain field like GF (P )
or GF (2m), others were designed to be unified, so
that they can be used in both fields.

Most proposed designs use radix-2. But the main
disadvantage of using a scalable radix-2 multiplier
is that it has a big delay in the critical path. This is
due to using carry propagate adders in computing
the final result. So, using high radixes will mini-
mize the delay, but as we mentioned above it will
increase the area and the complexity of the design.
For example, if we used radix-8 we may minimize
the number of multiplications needed by one-third
(since we are taking 3 bits at a time). But the
design will become more complex.

From here, the idea of using radix-4 comes . The
main point that I will try to make it in this paper
is that we can get the same gain that we get from
radix-8 in reducing the critical path delay, but with
less area and less complexity.

V. Notation

The notation used in the High-radix MM algo-
rithm is shown below:
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Step
1: S := 0

x−1 := 0
2: FOR j := 0 TO N - 1 STEP k
3: qY = Booth(xj+k−1..j−1)
4: S := S + (qY ∗ Y )
5: qMj := Sk−1..0 ∗ (2k −M−1

k−1..0) mod 2k

6: S := signext(S + qMj ∗M)/2k

END FOR;
7: IF S ≥ M THEN S := S −M

END IF;

Fig. 1. High-Radix (Radix− 2k) Montgomery Multiplica-
tion (R2kMM) Algorithm

• X - multiplier operand for modular
multiplication;
• xj - a single bit of X at position j;
• Xj- a single radix-r digit of X at position j;
• Y - multiplicand operand for modular
multiplication;
• N - number of bits in the operands;
• r - Radix (r = 2k);
• S -partial product in the multiplication
process;
• k - number of bits per digit in radix r;
• qYj - coefficient that determines a multiple
of Y which is added to the partial product
S in the jth iteration of the computational
loop;
• qMj - coefficient that determines a multiple
of the modulus
M which is added to the partial product S in
the jth iteration of the computational loop;
• BPW - number of bits in a word of either
Y , M or S;
• NW = d n+1

BPW e - number of words in
either Y , M or S;
• NS - number of stages;
• Ca, Cb - carry bits;
• (Y (NW−1), ..., Y (1), Y (0)) - operand Y
represented as multiple words;
• S

(i)
k−1..0 - bits k - 1 to 0 of the ith word of S.

VI. High-radix word-based Montgomery
Algorithm

The high radix MM algorithm is given below.
The parameter k changes depending on how

many bits of the multiplier X are scanned during
each loop, or in other words, the Radix of the com-
putation (r = 2k). Each loop iteration (computa-
tional loop) scans k-bits of X (a radix-r digit Xi)
and determines the value qY , according to Booth

encoding. Booth encoding is applied to a bit vector
to reduce the complexity of multiple generation in
the hardware[1]. I will talk about how I used booth
encoding to encode the digits of the multiplier.

Ca and Cb represent two carry bits that are prop-
agated from the computation of one word to the
computation of the next word. In order to make
the least-significant k-bits of S all zeros, qMjM is
added to the partial product. This is required to
avoid losing bits in the shift operation performed in
Step 10[1]. In step 11 and 12 the most significant
(MS) word of S is generated and sign extended.
The use of Booth encoding may cause intermedi-
ate values of S to be negative. The final result in
S, when Step 13 (final reduction step) is reached,
is always positive and it can be a number greater
than the modulus M. Its purpose is to reduce the
result to a number less than the modulus. M is
chosen as 2N−1 < M < 2N and the result is bounded
as 0 ≤ S < 2M . Therefore, a single subtraction of
the modulus will assure that S < M , just in the case
when the final result in S is greater than or equal
to the modulus[1].

VII. High-radix Montgomery Multiplier -
System level

For high-precision computation it is beneficial to
divide the multiplicand Y, the modulus M and the
result S into words[1]. The approach keeps the
gates and the wire delays inside reasonable bound-
aries. With operands precision of thousands of bits,
a conventional design to multiply all the bits at
once would have a high number of pins, increased
fan-in for the gates, high gate loads, and gate out-
puts driving long wires. The multiplications qY ∗ Y
and (qM * M) shown in the MWR2kMM algorithm
can be implemented by multiplexers (MUXes) and
adders. The shifting operation in Step 10 is sim-
ple in hardware. Additions can be done using
Carry- Save Adders (CSA), and keeping S in redun-
dant form. With this approach the carries gener-
ated during addition are not propagated but rather
stored in a separate bit-vector along with a bit-
vector for the sum bits. The most complex oper-
ations of finding the coefficients qY and qM (steps
3 and 5) can be executed by table look-up. qY is
pre-computed before the computational cycle be-
gins since it depends only on the least significant
k bits of X. This observation leaves the computa-
tion of qM in the most critical part of the algorithm
[1]. The architecture of a Montgomery multiplier
implementing the MWR2kMM algorithm is shown
in Fig 1. There are two main functional blocks:
Kernel and IO. Only the data path is shown. The
Kernels datapath is where the computation takes
place according to the algorithm. A control block
(not shown) supplies the signals to synchronize the
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Fig. 2. System Level Diagram of Modular Multiplier.

The final reduction functional block computes
the final result in a suitable form for the multi-
pliers output, implementing step 13 of the algo-
rithm. The Kernels data path gets as inputs BPW-
bit words of Y , M and S (represented in a Carry-
Save form as SS and SC) and k bits of X. The out-
puts are BPW-bit words of the new partial product
S. The superscript star (*) indicates that the sig-
nal is one word of the corresponding vector. For
example, Y (*) represents one word of vector Y.
These signals change every clock cycle. Depending
on the kernel configuration (number of stages and
word size) the operands must pass through the data
path several times. The signal Xj is a k-bit signal.
It provides the bits of X needed for Step 3 of the
MWR2kMM algorithm. The IO block provides the
interface with the user and the memory elements
for the operands, modulus, and partial result. This
block can be implemented in different ways depend-
ing on the application where the multiplier will be
used and/or the systems architecture in which the
multiplier will be integrated. The solution for this
block can be flexible and the only requirement for
it is to meet the timing specifications for the ker-
nel. Therefore, the architecture of this functional
unit is out of the scope of this work.

VIII. Efficiency of Reconfigurable
Architectures

Reconfigurable architectures with respect to
cryptography are ideal in that they shorten the
time-to-market a product, provide a great deal of
flexibility and at the same time are faster than
software implementations. Flexibility is important
in cryptography because implemented algorithms
need to respond to flaws within the algorithm itself
and/or changes in standards [12]. ASIC designs do
not offer this capability and thus are unattractive
for dynamic cryptographic algorithms.

Since the aim of our Montgomery Multiplier
is to be used in cryptographic algorithms we are
targeting FPGA implementations for our system.
It is worth noting that general-purpose proces-
sors would be inefficient for specific implemen-
tations of cryptographic algorithms due to vari-
able or unconventional bit-widths, no pipeline ex-
ploitation, constant propagation for reduced com-
plexity, and other factors [12]. Therefore, a typ-
ical cryptographic system would comprise of a
general-purpose processor in conjunction with a co-
processor as implemented in [14] for the Crypto-
Booster to accelerate cryptographic operations.

When speaking of common cryptographic appli-
cations, two main forms of input are considered
[12]:
• Stream-based
• Custom-instructions

For stream-based functions a large input stream
is processed producing a large data output stream,
whereas custom-instructions take in a limited num-
ber of inputs producing a few outputs.

Cipher components are built on various arith-
metic operations, where among the most difficult
is multiplication. Multipliers in hardware consume
a large amount of area and compute the results very
slowly as mentioned before. The implementation of
our proposed Montgomery multiplier is much more
feasible than other implementations.

Taking into consideration a stream-based func-
tion, we would like to increase the throughput of
our multiplier as much as possible. Given the fact
that it is already a radix-4 system, the throughput
is very much comparable to a radix-2 implemen-
tation as mentioned before. However, as we be-
gin to increase the number base, the overall gains
achieved begin to decrease, i.e. area/trade perfor-
mance. As we mentioned before, for a radix-8 im-
plementation the penalty paid in area was costly.

To get around this problem we propose the idea
of using the flexibility of reconfigurable architec-
tures to our advantage.

If an unacceptable amount of area is consumed in
a radix-8 implementation we can use the concept of
run-time reconfigurability. The idea behind Run-
Time Reconfigurable (RTR) systems is the ability
to configure a reprogrammable device at run-time,
or while it is executing. Run-time reconfiguration
lifts the resource limitations imposed by the de-
vice and gives designers even greater flexibility in
in the implementation of their designs. Area is not
an issue anymore and we only have to deal with
the latency which can be cleverly hidden if we are
careful with the implementation.

In the case of RTR designs, the execution of a
system is divided over time. The reconfigurable
device executes one portion of the overall design
at one instance or phase and is then reconfigured
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in order to run other parts of the design at a later
time. In this manner one chip can fit large designs
that would not be possible without the use of re-
configurability at run-time.

This is much more efficient than software based
approaches as it exhibits a hardware architecture
resembling that of an ASIC. However, it has the
flexibility of software as opposed to the custom
ASIC in that it can be updated during run-time.
The main drawback to such an approach is that
the design process becomes more complex as you
must consider the added dimension of time.

Use of partial reconfiguration with respect to a
run-time reconfigurable design is done by overlap-
ping execution and reconfiguration of the system.
Ganesan and Vemuri [15] put into practice a tempo-
rally functional design approach to solve this prob-
lem.

In terms of overlap between the execution of a
portion of the system and the reconfiguration of
another part of the chip, the goal is to hide the
reconfiguration overhead which in turn improves
the design latency.

The authors provide a simple design methodol-
ogy which includes two steps:
• Partitioning the design into a sequence of tempo-
ral segments.
• Enter a pipelining phase where the execution of
each temporal partition is pipelined with the re-
configuration of the following partition.

Figure 3 provides a visual illustration of these
steps [15].
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Fig. 3. Temporal partitioning and pipelining.

Given the fact that our design consists of a 2-
stage pipeline, for the radix-8 design we would pre-
configure the device for the first stage. Following
completion of the first pipeline stage, the device

would be configured for the next stage to complete
the operation. Making use of a partially reconfig-
urable device would allow the rest of the crypto-
graphic system to remain undisturbed while recon-
figuration is taking place. As we mentioned earlier
the drawback of complexity in time, another draw-
back is the use of an external memory to store the
intermediate results between reconfigurations. For
stream based inputs that would be required and
the size of the memory is directly proportional to
the length of the input stream.

As we have mentioned with regard to the radix-
8 MM design, the area was not feasible and at the
same time the complexity of the implementation
yielded a long critical path. Evidently, a RTR ap-
proach to the radix-8 MM would solve area con-
straints, however we are not able to avoid the criti-
cal path delay. This would have to be done by intro-
ducing more pipeline stages. An assessment of how
the throughput is affected and compared against
radix-4 and 2 designs after shortening the critical
path needs to be done with respect to a radix-8
design. Otherwise we come back to the conclusion
that the radix-4 design is the best performance-
wise.

IX. Conclusion
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Fig. 4. Area×time comparison between radix-2, radix-8,
and radix-4 for 256-bit operands.

In this paper we presented a new architecture for
implementing the Montgomery multiplication. The
main difference of our design from other proposed
designs beside it is scalable to any operand size, it
is using radix-4. It can be adjusted to any avail-
able chip area. We also considered the techniques
involved in mapping the architecture to reconfig-
urable hardwares and their efficiency. Run-time re-
configurability was proposed to reduce the amount
of area consumed for a radix-8 implementation of
the Montgomery Multiplier. However, in terms of
throughput, a radix-4 design still provides the best
results.
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