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Radix-4 Design of A Scalable Modular Multiplier
L.A. Tawalbeh

Abstract— In this paper I am presenting an al-
gorithm and architecture which is derived form A
Scalable radix-2 Montgomery Multiplier architec-
ture. Scalable means that a fixed-area multiplica-
tion module can handle operands of any size. In
this design I applied pipelining methodology to uti-
lize the concurrency in Montgomery Multiplication
operation. In order to reduce the delay a design for
radix-8 was presented in 2001. Although on one
side this design reduces the delay significantly, but
on the other side the design area increases. Ex-
perimental results are shown to prove that radix-
4 Montgomery Multiplier has the same delay im-
provement gained by using radix-8 design, with ap-
proximately half the design area used .

Keywords—Modular Multiplier, Scalable Archi-
tecture, Cryptography, Montgomery Multiplica-
tion.

I. Introduction

The arithmetic operations (i.e. addition, multi-
plication and inversion ) have several applications
in cryptography. The most important arithmetic
operation is modular multiplication and it is used
in many cryptographic algorithms such as RSA and
Deffie-Helman key exchange[1]. The Montgomery
Multiplier (MM) algorithm has many advantages
in implementation of modular multiplication, for
instance Montgomery Modular Multiplication algo-
rithm has enabled considerable progress in speed-
ing up of RSA cryptosystems. Perhaps the systolic
array implementation stands out most in the his-
tory of its success. During its implementation in
hardware, many aspects need to be considered in
chip design. Among these are trade-offs between
area and time, higher radix methods, carry propa-
gation issues and communications both within the
circuitry and with the rest of the world[4]. In this
paper we are going to raise some concern about the
trade-offs between area and time and the using of
higher radix.

A. Digit Multipliers And Their Complexity

In order to get improved performance, high-radix
algorithms have been proposed[3]. However, these
high-radix algorithms usually are more complex
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and consume significant amounts of chip area, and
it is not so evident whether the complex circuits de-
rived from them provide the desired speed increase.
The increase in the radix; forces the use of digit
multipliers, and therefore more complex designs
and longer clock cycle times are required. For this
reason, low-radix designs are usually more attrac-
tive for hardware implementation[2]. Early modu-
lar multiplication designs treated radix-2, radix-8
separately at a gate level. With rapidly advancing
technology, these have to be replaced by the generic
radix-r, which is now essential for a better under-
standing of the general principles, for modular ap-
proach to design and for selecting from parameter-
ized designs for optimal use of available chip area.
Today’s embedded cryptosystems are already us-
ing off-the-shelf 32-bit multipliers[4]. These r × r
multipliers form the digit-by-digit products.

Of course, there is an immediate trade-off be-
tween time and area. Doubling the number of digit
multipliers in a cryptotographic co-processor allows
the parallel processing of twice the digits and thus
reduces the time taken by half. This does not con-
tradict the Area × Time2 measure being constant
for non-pipelined multipliers, although it appears
to require less area than expected for the speed-up
achieved. This indicates that choosing the largest
radix possible for the given silicon area may not
be the best policy; a pipelined multiplier or sev-
eral rows of smaller multipliers may yield better
throughput for a given area.

B. Scalability

Many designs for Montgomery Multiplication
were proposed. Some of theses designs used a full
precision arithmetic modules which resulted in lim-
iting the design to a fixed degree. So, we need
to design a scalable architecture which uses mod-
ules with the scalability property. Scalability of an
arithmetic unit means that this unit can be reused
or replicated in order to generate long precision re-
sults independently of the data path precision for
which the unit was originally designed. When a
need for a multiplication of larger precision arises,a
new multiplier must be designed. Another way
to avoid redesigning the module is to use software
implementations and fixed precision multipliers[2].
However, software implementations are inefficient
in utilizing inherent concurrency of the multiplica-
tion because of the inconvenient pipeline structure
of the microprocessors being used. Furthermore,
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software implementations on fixed digit multipliers
are more complex and require excessive amount of
effort in coding. Therefore, a scalable hardware
module specifically tailored to take advantage of
the concurrency of the Montgomery multiplication
algorithm becomes extremely attractive. For ex-
ample, we can reuse or replicate these modules
in order to generate a long-precision results inde-
pendently of the data path precision for which the
module is originally designed[1]. Some of the pro-
posed designs works on a certain field like GF (P )
or GF (2m), others were designed to be unified, so
that they can be used in both fields.

Most proposed designs use radix-2. But the main
disadvantage of using a scalable radix-2 multiplier
is that it has a big delay in the critical path. This
is due to using a carry propagate adders in com-
puting the final result. So, using high radixes will
minimize the delay, but as we mentioned above it
will increase the area and the complexity of the
design. For example, if we used radix-8 we may
minimize the number of multiplications needed by
one-third (since we are taking 3 bits at a time).
But the design will become more complex.

From here, the idea of using radix-4 comes . The
main point that I will try to make it in this paper
is that we can get the same gain that we get from
radix-8 in reducing the critical path delay, but with
less area and less complexity.

II. Notation

. In this paper the following notation is used :
• M - modulus for modular multiplication;
•X - multiplier operand for modular multiplication;
• n - number of bits in the operands;
• w - word size;
• p - number of processing elements in the pipeline;
• e - number of words in an operand.

III. Multiple-Word Radix-2 Montgomery
Multiplication (MWR2MM) Algorithm

The use of short precision words reduces the
broadcast problem in the circuit implementation.
The broadcast problem corresponds to the increase
in the propagation delay of high-fanout signals[1].
Also, a word-oriented algorithm provides the sup-
port we need to develop scalable hardware units
for the MM. Therefore, an algorithm which per-
forms bit-level computations and produces word-
level outputs would be the best choice. Let us con-
sider w-bit words. For operands with m bits of
precision, e = dn+1

w e words are required. The ex-
tra bit used in the calculation of e is required since
it is known that S (internal variable of the radix
2 algorithm) is in the range [0,2M-1], where M is
the modulus. Thus the computations must be done
with an extra bit of precision. The input operands

will need an extra 0 bit value at the leftmost bit
position in order to have the precision extended
to the correct value[1]. We propose an algorithm
in which the operand Y (multiplicand) is scanned
word-by-word, and the operand X (multiplier) is
scanned bit-by-bit. This decision enables us to ob-
tain an efficient hardware implementation. We call
it Multiple Word Radix-2 Montgomery Multiplica-
tion algorithm (MWR2MM. We make use of the
following vectors:

M = (M (e−1)....M (1).M (0));
Y = (Y (e−1)....Y (1).Y (0));
X = (xm−1....x1.x0);

where the words are marked with superscripts and
the bits are marked with subscripts. The concate-
nation of vectors a and b is represented as (a,b). A
particular range of bits in a vector from position i
to position j, j > i is represented as aj..i. The bit
position i of the kth word of a is represented as ak

i .
The details of the MWR2MM algorithm are

given below.

S = 0 -initialize all words of S
for i = 0 to m-1
(C, S(0)) := xiY

(0) + S(0)

if S
(0)
0 = 1 then
(C,S(0)) := xiY

(0) + S(0)

for j = 1 to e-1
(C,S(j)) := C + xiY

(j) + M (j) + S(j)

S(j−1) := (S(j)
0 , S

(j−1)
w−1..1

S(e−1) := (C, S
(e−1)
w−1..1

else
for j = 1 to e-1

(C, S(j) := (C + xiY
(j) + S(j)

(S(j−1)) := (S(j)
0 , S

(j−1)
w−1..1

S(e−1) := (C, S
(e−1)
w−1..1

The MWR2MM algorithm computes a partial sum
S for each bit of X, scanning the words of Y and
M[1]. Once the precision is exhausted, another bit
of X is taken, and the scan is repeated. Thus, the
algorithm imposes no constraints to the precision
of operands. The arithmetic operations are per-
formed in precision w bits, and they are indepen-
dent of the precision of operands. What varies is
the number of loop iterations required to accom-
plish the modular multiplication. The carry vari-
able C must be in the set {0, 1, 2}. This condition is
imposed by the addition of three vectors S, M, and
xiY .

IV. High-radix word-based Montgomery
Algorithm

The notation used in this algorithm is shown
in Table 1. This algorithm is a generalization of
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(MWR2MM).

• X - multiplier operand for modular
multiplication;
• xj - a single bit of X at position j;
• Xj- a single radix-r digit of X at position j;
• Y - multiplicand operand for modular
multiplication;
• N - number of bits in the operands;
• r - Radix (r = 2k);
• S -partial product in the multiplication
process;
• k - number of bits per digit in radix r;
• qYj - coefficient that determines a multiple
of Y which is added to the partial product
S in the jth iteration of the computational
loop;
• qMj - coefficient that determines a multiple
of the modulus
M which is added to the partial product S in
the jth iteration of the computational loop;
• BPW - number of bits in a word of either
Y , M or S;
• NW = d n+1

BPW e - number of words in
either Y , M or S;
• NS - number of stages;
• Ca, Cb - carry bits;
• (Y (NW−1), ..., Y (1), Y (0)) - operand Y
represented as multiple words;
• S

(i)
k−1..0 - bits k - 1 to 0 of the ith word of S.

Table 1:

The parameter k changes depending on how
many bits of the multiplier X are scanned during
each loop, or in the other words, the Radix of the
computation (r = 2k). Each loop iteration (compu-
tational loop) scans k-bits of X (a radix-r digit Xi)
and determines the value qY, according to Booth
encoding. Booth encoding is applied to a bit vector
to reduce the complexity of multiple generation in
the hardware[3]. I will talk about how I used booth
encoding to encode the digits of the multiplier.

Ca and Cb represent two carry bits that are prop-
agated from the computation of one word to the
computation of the next word. In order to make
the least-significant k-bits of S all zeros, qMjM is
added to the partial product. This is required to
avoid losing bits in the shift operation performed in
Step 10[3]. In step 11 and 12 the most significant
(MS) word of S is generated and sign extended.
The use of Booth encoding may cause intermedi-
ate values of S to be negative. The final result in
S, when Step 13 (final reduction step) is reached,
is always positive and it can be a number greater
than the modulus M. Its purpose is to reduce the
result to a number less than the modulus. M is
chosen as 2N−1 < M < 2N and the result is bounded

as 0 ≤ S < 2M . Therefore, a single subtraction of
the modulus will assure that S < M , just in the case
when the final result in S is greater than or equal
to the modulus[3].

V. High-radix Montgomery Multiplier - System
level

For high-precision computation it is beneficial to
divide the multiplicand Y, the modulus M and the
result S into words[3]. The approach keeps the
gates and the wire delays inside reasonable bound-
aries. With operands precision of thousands of bits,
a conventional design to multiply all the bits at once
would have a high number of pins, increased fan-
in for the gates, high gate loads, and gate outputs
driving long wires. The multiplications (qY * Y)
and (qM * M) shown in the MWR2kMM algorithm
can be implemented by multiplexers (MUXes) and
adders. The shifting operation in Step 10 is sim-
ple in hardware. Additions can be done using
Carry- Save Adders (CSA), and keeping S in redun-
dant form. With this approach the carries gener-
ated during addition are not propagated but rather
stored in a separate bit-vector along with a bit-
vector for the sum bits. The most complex oper-
ations of finding the coefficients qY and qM (steps
3 and 5) can be executed by table look-up. qY is
pre-computed before the computational cycle be-
gins since it depends only on the least significant k
bits of X. This observation leaves the computation
of qM in the most critical part of the algorithm[3].
The architecture of a Montgomery multiplier im-
plementing the MWR2kMM algorithm is shown
in Fig 1. There are two main functional blocks:
Kernel and IO. Only the data path is shown. The
Kernels datapath is where the computation takes
place according to the algorithm. A control block
(not shown) supplies the signals to synchronize the
system.

Fig 1: System Level Diagram of Modular Multiplier.
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The final reduction functional block computes
the final result in a suitable form for the multi-
pliers output, implementing step 13 of the algo-
rithm. The Kernels data path gets as inputs BPW-
bit words of Y , M and S (represented in a Carry-
Save form as SS and SC) and k bits of X. The out-
puts are BPW-bit words of the new partial product
S. The superscript star (*) indicates that the sig-
nal is one word of the corresponding vector. For
example, Y (*) represents one word of vector Y.
These signals change every clock cycle. Depending
on the kernel configuration (number of stages and
word size) the operands must pass through the data
path several times. The signal Xj is a k-bit signal.
It provides the bits of X needed for Step 3 of the
MWR2kMM algorithm. The IO block provides the
interface with the user and the memory elements
for the operands, modulus, and partial result. This
block can be implemented in different ways depend-
ing on the application where the multiplier will be
used and/or the systems architecture in which the
multiplier will be integrated. The solution for this
block can be flexible and the only requirement for
it is to meet the timing specifications for the ker-
nel. Therefore, the architecture of this functional
unit is out of the scope of this work.

VI. Radix-4 design and analysis

The radix 8 scalable multiplier design proposed
in [3] uses Booth recoding to recode the multi-
plier X from the digit set {0, 1, 2, 3, 4, 5, 6, 7} to the
digit set {−4,−3,−2,−1, 0, 1, 2, 3, 4}. After that the
researcher generates zero, -1,1, -2,2 and -4,4 multi-
ples of the multiplicand. These multiples cover all
possible multiples of the multiplicand.

According to the multiple word Montgomery
Multiplication Algorithm (MWMM), we need to
add a multiples of the multiplicand at a certain
step. But when dealing with radix-4 ( the digit
set is {0, 1, 2, 3}, we need to decode the multiplier.
So, I will use the Booth recoding to recode the mul-
tiplier into the digit set {−2,−1, 0, 1, 2} to get rid of
the multiple 3 .

Booth recoding is done according to the follow-
ing equation : Booth (Xi, xi−1) = −2xi+1 + xi + xi−1.
Where Xi = (xi+1, xi). Each time we perform recod-
ing we step the index by 2.

Example : if we have the X = (01101)2 = (13)10.then
the recoded multiplier will be :
i = 0 : 010 ⇒ 1, I added 0 at position i = -1.
i = 2 : 110 ⇒ 1 ,
i = 4 : 001 ⇒ 1 , I added 0 at position i = 5 .
So Booth(X)= (111)4. Where 1 means negative one .

It is possible to optimize the recoding circuit pro-
posed in[3], and reduce its effect on the critical path
delay. One important issue, related to adding a

modulus M to the partial product during the com-
putations according to the algorithm. This addition
required to make the least significant k bits ( in
radix-4 we have k=2 ) of the partial product equals
zero, so there will be no lost information during the
shifting. In order to achieve this certain multiples
qM of the modulus M should be added. But since
we are using radix-4, we need to deal with two bits
at a time. So, there will be four possible choices
for the modulo multiples (qM ) to be added. Choice
should be made according to certain conditions and
tests that must be performed.

The proposed approach can be used as follows:
Let S(0) to be the least significant word of the par-
tial product, and M (0) the least significant word of
the modulus M. To find qM we need to test the
least two significant bits of both S(0) and M (0)( let
us call them S

(0)
10 and M

(0)
10 respectively):

• If S
(0)
10 = 00, so nothing will be added, so qM=0.

• If S
(0)
10 = 10 then we need to add 2M, so qM = 2.

(note that M is prime and so it is odd, so the least
significant two bits should be either 01 or 11 ). In
both cases we add 2M = 10 to S

(0)
10 = 10 to give the

required result 00
• If S

(0)
10 = 00 or S

(0)
10 = 11 :

S
(0)
10 M

(0)
10 = 11 M

(0)
10 = 01

11 Sub M Add M
01 Add M Sub M

In addition we have qM =1, and in subtraction we
have qM = 1. So, I suggest to encode the multiples
of M into the digit set {−1, 0, 1, 2}. By taking a look
to the different combinations that we have above,
we can see that we need to subtract the modulo M
only when the XORING of the least two significant
bits of M (0) and M (0) is = 00. So, we have qM =
1. What I am trying to say that we can apply an
XORING test to the least significant two bits of
M (0) and M (0), and then decide the value of the
multiples of M that should be added .

XORING Result :
• 00 ⇒ qM = 1.
• 10 ⇒ qM = 1.
We notice that the first bit of the XORING result
in this two cases is zero .

Now if we took S
(0)
10 = 00, this is the case when we

don’t need to add any thing( qM = 0), The possible
results of XORING it with the two possible values
of M

(0)
10 are:

00 XOR 01 / 11 ⇒ 01 / 11 .
Also by taking S

(0)
10 = 10 ,this is the case when we

need to add 2M.(qM = 2) we get the following
XORING result :
10 XOR 01 / 11 ⇒ 11 / 01.
The above results are summarized in the following
table :
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S
(0)
10 M

(0)
10 XORINGResult

00 01 01
00 11 11
10 01 11
10 11 01

Table shows that the first bit of the XORING
result in the above two cases is always one. So, we
can minimize this test. We need to look at the first
bit of this XORING results. If it is 0, it means that
(qM = 1 or = 1 ), and then we can take the second
bit to decide which to choose ( for instance we can
use this 2nd bit as a select control for a mux which
has M and M complement as inputs).

Same way, if the 1st bit = 1, then it means that
we need to choose between 2M and 0M. So, again
we use the 2nd bit to decide by using it as a mux
select control that has 2M and zero as inputs. Note
that 2M can be easily generated by shifting M one
position to the left.

Using the information explained in the above dis-
cussion we can reduce the complexity of the design
and make it fit into a specific area.

VII. Conclusion

In this paper we presented a new architecture for
implementing the Montgomery multiplication. The
main difference of our design from other proposed
designs beside it is scalable to any operand size,
it is using radix-4. and it can be adjusted to any
available chip area. The proposed architecture is
also flexible. In this paper, I proved that radix-
4 Montgomery Multiplier reduces the critical path
delay, by the same amount that we can get from
the proposed radix-8 design. In addition to that
radix-4 design area and complexity is almost half
of radix-8 design. Figure2 shows a comparison of
design area between radix-2 and radix-4 and radix-
8.

Fig 2: Area×time comparison between radix-
2(v1), radix-8(v2), and radix-4(v3)for 256-bit
operands.
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