
1

Study of AES and its Efficient Software
Implementation

Eashwar Thiagarajan and Madhuri Gourishetty
Department of Electrical Engineering & Computer Science,

Oregon State University, Corvallis, Oregon 97331 -USA.
E-mail: teashwar@engr.orst.edu & gourisma@engr.orst.edu

Abstract— This work aims to familiarize the reader with the
concepts behind AES or Advanced Encryption Standard. This
work shall serve as a useful starting point for those who are inter-
ested in thinking along lines of software implementation of AES.
To do this we shall go over some basic definitions in the context of
AES and then explain AES at large from the perspective of vari-
ous authors and papers. After this a brief discussion of an efficient
software implementation of AES shall follow.

INTRODUCTION

Section 1 of this paper shall introduce the reader to AES.
Section 2 shall discuss the implementation of the AES, with
concepts like finite field operations - Multiplication, Modulo-2
Addition. Section 3 sheds light on the Softfare implementa-
tions of AES and briefly discusses some performance aspects.
Section 4 reviews an already presented matter on Efficient im-
plementation of AES.

I. WHAT IS AES ?

The Advanced Encryption Standard (AES) is an encryption
algorithm for securing sensitive but unclassified material by
U.S. Government agencies. The Rijndael algorithm proposed
as an accepted standard is discussed in the sections that follow.
The AES algorithm is aimed at replacing the DES. The figure
1 elucidates the main steps comprising the AES algorithms.The
four major functions that comprise the AES are Add Round
Key, Substitute bytes, Shift Rows and Mix Columns. Rijndael
is a substitution-linear transformation network with 10, 12 or
14 rounds, depending on the key size. A data block to be pro-
cessed using Rijndael is partitioned into an array of bytes, and
each of the cipher operations is byte-oriented.

II. AES IMPLEMENTATION DETAILS

A byte in Rijndael is a group of 8 bits and is the basic data
unit for all cipher operations. Such bytes are interpreted as finite
field elements using polynomial representation, where a byte
b with bits b0, b1,...b7 represents the finite field elements, as
shown below.

Internally Rijndael operates on a two dimensional array of
bytes called the state that contains 4 rows and Nc columns,

Authors are graduate students at the Department of Electrical Engineering &
Computer Science, Oregon State University, Corvallis, Oregon 97331. E-mail:
teashwar@engr.orst.edu & gourisma@engr.orst.edu

where Nc is the input sequence length divided by 32. In this
state array, denoted by the symbol s, each individual byte has
two indexes: its row number r, in the range 0 ??r ¡ 4, and its
column number c, in the range 0 ??c ¡ Nc, hence allowing it to
be referred to as s[r, c]. For AES the range for c is 0 ??c ¡ 4
since Nc has a fixed value of 4. The conversion from plain text
to State Matrix is shown in Figure 1.

As discussed, bytes are can be represented as polynomials.
Finite field operations like addition and multiplication are re-
quired for key scheduling and rounding.The addition of two
finite field elements is achieved by adding the coefficients for
corresponding powers in their polynomial representations, this
addition being performed in GF(2), that is, modulo 2, so that 1
+ 1 = 0. Addition is nothing but performing XOR between two
expressions.

Finite field multiplication is more difficult than addition and
is achieved by multiplying the polynomials for the two elements
concerned and collecting like powers of x in the result. Since
each polynomial can have powers of x up to 7, the result can
have powers of x up to 14 and will no longer fit within a single
byte. This is overcome by using a field generator. The product
is divided by this field generator and the remainder is taken as
the result. Since there are 256 possible polynomials, a look up
table can be created for a specific field generator. So the look
up table will have 256 * 256 entries.

Key scheduling: The round keys are derived from the cipher
key by means of a key schedule with each round requiring Nc
words of key data. For 128-bits keys the key scheduling oper-
ates intrinsically on blocks of 4 32-bits words; we can calculate
one new round key from the previous one.We denote the ith
word of the actual round key with K[i], where 0¡i¡4, and the ith
word of the next round key with K[i]. K[0] is computed by an
XOR between K[0], a constant r (field generator) and K[3], the
latter being pre rotated and transformed. The other three words
K[1], K[2] and K[3] are calculated as K[i] = K[i] . K[i - 1].

Rounding: At the start of the cipher the cipher input is copied
into the internal state using the conventions described before
(Figure 1). An initial round key is then added and the state is
then transformed by iterating a round function in a number of



2

Fig. 1. Four Major functions of AES

cycles. The number of cycles Nn varies with the key length
and block size. On completion the final state is copied into the
cipher output using the same conventions. The steps involved
in AES are shown in Illustration1. It is the algorithm for the
Rijndael algorithm.

Round Function: One round is termed as a cycle and each
cycle has four steps. Each step of transformation is described
below.

Add Round Key: This is the first step of transformation. The
XorRoundKey function declared in Illustration 1 has to perform
a bitwise xor of the state matrix and the round key matrix.

Sub-Bytes Transformation: Inverse of the state matrix is
found here and affine transformation is performed.

Shift Rows: The ShiftRows transformation operates individ-
ually on each of the last three rows of the state matrix by cycli-
cally shifting the bytes in the row. The second row is shifted
one time to the left, third row shifted two times and fourth row
shifted three times.

Mix Columns: The mix columns transformation computes
the new state matrix S by left-multiplying the current state ma-

Fig. 2. Illustration: AES Algorithm

trix S by the polynomial matrix P:S = P o S where P is a fixed
matrix as shown below.

III. SOFTWARE IMPLEMENTATION

Software implementations cover a wide range. In some
cases, space is essentially unrestricted; in other cases, RAM
and/or ROM may be severely restricted. In some cases,large
quantities of data are encrypted or decrypted with a single key.
In the case of AES, the key changes frequently, perhaps with
each block of data. One issue that arises in software imple-
mentations is the basic underlying architectures, whether the
architecture is 32 bit processor, 8 bit etc. It should be noted
that performance cannot be classified by word size alone. The
performance of AES or any other encryption algorithm depends
on a particular high-level language used (like assembler, com-
piler or interpreter). In most of the cases, the software plays
an important role and strongly affects the performance figures.
Hand-coded assembly code will generally produce better per-
formance results than an optimizing compiler. Interpreted lan-
guages are, in general, poorly adapted to the task of optimiz-
ing performance. Compilers are in between. Some compilers
perform better because of the underlying architecture. This in-
creases the difficulty of measuring performance across a variety
of platforms. It is found that Rijndael performed better on some
platforms when hand-coded assembler was used as opposed to
compilers. For Rijndael, key setup or encryption/decryption is
noticeably slower for 192-bit keys than for 128-bit keys, and
slower still for 256-bit keys. Rijndael specifies more rounds
for the larger key sizes, affecting the speed of both encryp-
tion/decryption and key setup.

So from the above discussion it is clear that the performance
of the implementation depends on the underlying architecture.
C and assembler (64 bit processor) have better performance
over Java (32 bit processor). Java and C codes are studied for
comparisons, but it is found difficult to find the clock cycles, be-
cause Java supports only 32 bits. A Matlab implementation of
AES is also found. The main advantage of implementing with
Matlab is the understandability, more than speed of execution.



3

In the next section, an efficient way of AES is described
which improves the performance of software implementation.

IV. EFFICIENT SOFTWARE IMPLEMENTATION OF AES

This section illustrates optimized version of the Rijndael
AES algorithm. The details of this section can be found in r ef-
erence [3]. Both the encryption and the decryption algorithms
are optimized. The task is divided in two parts: optimization of
the algorithm working on the State matrix, and modification of
the key scheduling. In both cases, the base line consists in the
transposition of the State matrix, and the consequent rearrang-
ing of the various transformations. In fact, as a consequence of
the transposition of the State matrix, also the key scheduling is
rearranged in a suited way.

A. The Transposed State Matrix Primitives

It is possible to enhance the throughput of the implemen-
tation of AES by changing the way in which data are repre-
sented by the software. For this study, look up tables were used
for Sub-Byte transformations. A little amount of space was
given to S-Box and inverse S-Box. All the remaining opera-
tions were computed dynamically.All the primitives considered
in the study behave in a peculiar way, operating on a transposed
version of the State matrix. All the steps of the algorithm must
be modified in order to preserve global functionality while op-
erating on the transposed State matrix. Only the encryption is
described here.

Steps of AES:
Add Round Key: This remains unchanged. It is just XOR

between state matrix and the round keys. But round key gener-
ation is changed.

SubBytes transformation is not changed, because it is not de-
pendant on the State Matrix.

Shift Rows is changed - This transformation does not shift
rows but it operates in the same way on columns.

The MixColumns transformation is deeply revised. As
shown in the above section, the Mix columns transformation
is nothing but multiplying the State Matrix with a fixed polyno-
mial matrix.

In this study, Mix columns transformation is completely
changed.Instead of using a 4 * 4 matrix, here only one column
is used which has 32 bits.

Here xi, for i = 0 to 3, is the 32-bits words (or columns) of the
transposed State matrix before applying the MixColumns trans-
formation. yi, for j = 0 to 3, is the 32-bits words (or columns)
of the transposed State matrix after applying the MixColumns
transformation. The revised version of MixColumns is then
represented by the following set of equations:

y0 = 02 * x0 (+) 03 * x1 (+) x2 (+) x3
y1 = x0 * 02 (+) x1 (+) 03 * x2 (+) x3
y2 = x0 (+) x1 (+) 02 * x2 (+) 03 * x3

y3 = 03 * x0 (+) x1 (+) x2 (+) 02 * x3
As described, the variables xi and yi contain the 4 bytes at

position i of the columns of the State matrix in the normal, non-
transposed, version of the transformation. These variables are
32 bits long. 02 * x0 means multiplying the polynomial with x0.
x0 is 32 bits. So multiplication does not mean the normal GF
multiplication. But 4 multiplications are performed simultane-
ously to be precise parallely on 4 bytes of the 32 bit word. The
generator polynomial i.e. the field generator remains the same.
These calculations can be done in a simple way. Use the yi vari-
able as an accumulator, and to use the xi variable for storing the
product of the initial values of xi and of the 4 partial products:
xi, 2 * xi, 4 * xi and 8 * xi. Therefore the MixColumns trans-
formation is computed in only 3 steps: a sum step, a doubling
step and a final sum step. The three steps are shown below

First Second Third
y0 = x1 (+) x2 (+) x3 x0 = 02 (+) x0 y0 (+) = x0 (+) x1
y1 = x0 (+) x2 (+) x3 x1 = 02 (+) x1 y1(+) = x1 (+) x2
y2 = x0 (+) x1 (+) x3 x2 = 02 (+) x2 y2(+) = x2 (+) x3
y3 = x0 (+) x1 (+) x2 x3 = 02 (+) x3 y3(+) = x0 (+) x3

B. The Transposed State Matrix Key Scheduling

As described in the above sections, we need to transpose the
keys before using them. This can be done by first calculating the
round keys and then transposing them. But this involves a big
overhead. So a better way is suggested in the paper (reference
[3]). Key scheduling is redesigned to get the transposed one
directly. We will here see the details of the implementation.
See reference [3] for more details.

For 128-bits keys the key scheduling operates intrinsically
on blocks of 4 32-bits words; we can calculate one new round
key from the previous one.We denote the ith word of the actual
round key with K[i], and the ith word of the next round key with
K

�

[i]. K
�

[0] is computed by an XOR between K[0], a constant
field generator and K[3], the latter being pre rotated and trans-
formed using the S-BOX. The other three words K

�

[1], K
�

[2]
and K

�

[3] are calculated as K
�

[i] = K[i] . K
�

[i - 1].
The new way of representing the round keys is shown below:-

”pad” means zero-padding of the 24 most significant bits
of the word since SBox returns an 8 bits value. We can note
that the computation overhead with respect to the normal, non-
transposed key scheduling is just few shift operations.



4

C. Performance results

It is found that this implementation has given good results.
The implementation is done in C. There are two kinds of im-
plementation - key unrolling and key on the fly. As discussed
above round keys can be found at the beginning of the encryp-
tion or on the fly, because they are not dependant on any other
data. Finding keys on the fly requires less memory but the lat-
ter requires more because all the keys should be stored. Results
for both cases are shown below. The results are compared with
an equivalent version of AES by Dr. Brian Gladman, who has
been involved in the definition of the AES standard and his ver-
sion is well referenced. The code is run on different processors
for comparing the results. The results are shown in table 1 and
table 2.

Fig. 3. Table 1: Clock cycles required for AES on different platforms (using
key unrolling)

Fig. 4. Table 2: Clock cycles required for AES on different platforms (using
key on-the-fly)

This algorithm is written in C and has been compiled
and evaluated on some 32-bits architectures, including the
ARM7TDMI and ARM9TDMI processors [4], the ST22 smart
card processor by ST Microelectronics [5], and also on a gen-
eral purpose Intel PentiumIII platform. These three platforms
represent rather different architectures used in various systems
and environments: embedded system, smart cards and PC, re-
spectively. Please see the references to get more information on
the processors. See the references for ARM and cAESar.

As explained before, the application of the Rijndael algo-
rithm consists of 3 parts, key scheduling, encryption and de-
cryption. This efficient algorithm provided with a speed gain in
the MixColumns (during encryption) transformations, requir-
ing only few changes to the key scheduling. A brief description
of how these two things work is given in the following lines.
A single Mix-Columns is a composition of sums and doublings
in the field GF(28), plus some rotations of the elements of the
column. A sum in GF(28) is a bitwise XOR of bytes and a
doubling is a composition of a masking, a shift and a condi-
tional bitwise XOR of bytes [3]. Since a column is composed

by 4 elements of the field GF(28), some operations can be ap-
plied in parallel to the entire column, as the whole column can
be accommodated in a single register of the CPU [3]. On a 32
bits platform a single MixColums requires 4 bitwise XORs plus
one doubling of the four GF(28) elements and 3 rotations. The
MixColumns must be applied to the 4 columns giving a total of
16 XORs, 4 doublings and 12 rotations. In the efficient algo-
rithm no rotations are required for Mix Columns, so the speed
is greatly increased.In general it is found that this efficient algo-
rithm is much better than the Gladman decryption. The tables
1 and 2 show the results.

V. CONCLUSION

This paper surveyed several publications on AES, brought
out the essential concepts that make the algorithm, some soft-
ware implementations and issues were visited. AES algorithms
implementation has been done with 128 bits in most of the ob-
served cases. Implementations at 192 and 256 bits would make
an interesting case study, even as the encryption levels are up
a notch or two. The usage of look-up tables ends up being an
memory intensive approach, and this is evident in the case of
Smart Card systems. A novel approach to this issue of reducing
the implementation complexity needs to be addressed.

REFERENCES

[1] J. Daemen, V. Rijmen “AES Proposal: Rijndael,” in
http://csrc.nist.gov/encryption/aes/ 1999.

[2] NIST - FIPS Standard “Announcing the ADVANCED ENCRYPTION
STANDARD (AES),” in Federal Information Processing Standards Pub-
lication, n. 197, 2001, November 26.

[3] Guido Bertoni1, Luca Breveglieri1, Pasqualina Fragneto, Marco Mac-
chetti, and Stefano Marchesin “Efficient Software Implementation of AES
on 32-Bit Platforms,” in Cryptographic Hardware and Embedded Systems
- CHES 2002,, pp. 159-171, B.S. Kaliski Jr., .K. Ko, C. Paar.

[4] Kazumaro Aoki, Helger Lipmaa “Fast Implementations of AES Candi-
dates,” in Submitted for publication - Third AES Candidate Conference,
New York City, USA, 2001, August 13-15.

[5] ARM Ltd. Website “www.arm.com,”
[6] STMicroelectronics website “www.st.com,”
[7] B. Gladman “A Specification for Rijndael, the AES Algorithm,” in

http://fp.gladman.plus.com/, 2001.
[8] Jif org J. Buchholz “Matlab Implementation of the Advanced Encryption

Standard ,” in http://buchholz.hs-bremen.de, 2001, December 19.


