
1

Securing a SmartCard
Sampath Thodupunuri

School of Electrical Engineering & Computer Science,
Oregon State University, Corvallis, Oregon 97331 -USA.

E-mail: thodupsa@cs.orst.edu

Abstract—
This paper describes techniques for improving smartcard

security by randomizing clock signal, using randomized mul-
tithreading, using a robust low-frequency sensor, by the de-
struction of test circuitry, by the use of a restricted program
counter and top layer meshes, by eliminating data depen-
dent power consumption and ways to defend against fault
induction.

I. Introduction

Smart cards are increasingly prevalent, particularly
in Europe, for authentication and payment mechanisms
(credit cards, pay-TV access control, public transport pay-
ment, medical records, personal identity, mobile phone
SIMs, etc.). They present a harder target for the crim-
inal underworld than their magnetic strip counterparts.
Nonetheless, there is sufficient economic gain in cracking
smart cards. Pay-TV is particularly vulnerable since com-
munication with the smart card is typically unidirectional,
from the broadcasting source to the set-top box hosting the
smart card. Since there is no back channel, it is not possible
to identify duplicate smart cards via interactive protocols.
Consequently, it is economically attractive to reverse engi-
neer a pay-TV smart card in order to make a large number
of duplicates. As smart cards are used in more and more
applications, many new opportunities for theft and fraud
open up to criminals capable of reverse engineering cards
or extracting key material.

The next section introduces attack technologies which
determine the environment in which smart cards must sur-
vive. A number of hardware level security issues are ad-
dressed and the possible counter measures against these
attacks to build more secure smart cards are described.

II. Attack Technologies

Hardware level attacks fall into two main categories: in-
vasive and non-invasive attacks.

Invasive Attacks: Reverse engineering is the most extreme
form of an invasive attack where the smart card is depack-
aged and completely analyzed. Monitoring of bus signals
is often sufficient to extract data, and can be undertaken
by dropping picoprobes on bus lines. If bus signals are
hidden (e.g. by a top level metal defense grid), a focused
ion beam (FIB) workstation may be used to extract sig-
nals. There is also the ‘litigation attack’; the attacker first
obtains a patent that might possibly have been infringed
by a smart card designer, then abuse the legal discovery
process to obtain design details. Thus, inline with Kerck-
hoffs’ principle (The security of a cryptosystem must not

depend on keeping secret the crypto-algorithm. The secu-
rity depends only on keeping secret the key.), one has to
assume that the design details of a smart card are in the
public domain. Another attack technique, used in the con-
text of an invasive microprobing attack, is to use a laser to
shoot away alarm circuitry, or protective circuitry such as
access control matrices which allow certain areas of mem-
ory to be accessed only after the presentation of certain
passwords [1].

Non-Invasive Attacks: More recently non-invasive attacks
(sometimes called side channel attacks) have been investi-
gated. An early approach was to measure data dependent
timing in order to extract key information [2]. Another
approach is differential power analysis [3]where keys are
extracted from the differences between runs of data depen-
dent power emissions. A variation of this attack extracts
keys via electromagnetic analysis (EMA). The use of 40mm
antennas can easily pin-point individual power distribution
nets and can be used to build up a profile of on chip power
consumption.

Non-invasive attacks are of particular concern because they
leave no evidence of tampering can be undertaken relatively
quickly. Software techniques are used to introduce random-
ness to the execution process to make side channel attacks
more difficult. However, to reduce data dependent power
leakage requires careful circuit design.

Another threat to smart card systems is fault induction.
Faults are induced in a number of ways, such as by in-
troducing transients (’glitches’) on the power and clock
lines and illuminating one or more transistors with a laser.
These can cause the processor to malfunction in a pre-
dictable and instructive way. For example, when a proces-
sor executes a branch instruction, the write to the program
counter is often conditionally set late in the clock cycle. An
abnormally high clock frequency may result in branches not
being taken. Skipping a branch instruction can result in a
jump to some failure case being nulled, thereby bypassing
security checks.

This paper describes techniques for improving smart card
security by the use of following counter measures:
• Randomized clock signal
• Randomized multithreading
• Robust low-frequency sensor
• Destruction of test circuitry
• Restricted program counter
• Top-layer sensor meshes
• Eliminating data dependent power consumption



2

• Defending against fault induction

III. Counter Measures

A. Randomized Clock Signal:

Many non-invasive techniques require the attacker to
predict the time at which a certain instruction is executed.
A strictly deterministic processor that executes the same
instruction c clock cycles after each reset – if provided with
the same input at every cycle – makes this easy. Predictable
processor behavior also simplifies the use of protocol reac-
tion times as a covert channel.

The obvious countermeasure is to insert random time
delays between any observable reaction and critical oper-
ations that might be subject to an attack. If the serial
port were the only observable channel, then a few random
delay routine calls controlled by a hardware noise source
would seem sufficient. However, since attackers can use
cross correlation techniques to determine in real-time from
the current fluctuations the currently executed instruction
sequence, almost every instruction becomes an observable
reaction, and a few localized delays will not suffice.

It is therefore strongly recommended introducing tim-
ing randomness at the clock-cycle level. A random bit-
sequence generator that is operated with the external clock
signal should be used to generate an internal clock signal.
This will effectively reduce the clock frequency by a fac-
tor of four, but most smartcards anyway reduce internally
the 3.5 MHz provided for contact cards and the 13 MHz
provided for contact-less cards.

Hardware random bit generators (usually the amplified
thermal noise of transistors) are not always good at pro-
ducing uniform output statistics at high bit rates, therefore
their output should be smoothed with an additional simple
pseudo-random bit generator.

The probability that n clock cycles have been executed
by a card with a randomized clock signal after c clock cycles
have been applied can be described as a binomial distribu-
tion.

p(n, c) = 2−c

(
c

2n

) (
c

2n + 1

)
(1)

≈
√

8/πce−8/c.(n−c/4)2asc→∞ (2)

So for instance after we have sent 1000 clock cycles to
the smartcard, we can be fairly sure (probability =̃ 1) that
between 200 and 300 of them have been executed. This
distribution can be used to verify that safety margins for
timing critical algorithms – such as the timely delivery of
a pay-TV control word – are met with sufficiently high
probability.

Only the clock signals of circuitry such as the serial port
and timer need to be supplied directly with the external
clock signal, all other processor parts can be driven from
the randomized clock.

A lack of switching transients during the inactive periods
of the random clock could allow the attacker to reconstruct

the internal clock signal from the consumed current. It is
therefore essential that the processor shows a characteristic
current activity even during the delay phases of the random
clock. This can be accomplished by driving the bus with
random values or by causing the microcode to perform a
write access to an unused RAM location while the processor
is inactive.

B. Randomized multithreading:

To introduce even more non-determinism into the exe-
cution of algorithms, it is conceivable to design a multi-
threaded processor architecture that schedules the proces-
sor by hardware between two or more threads of execu-
tion randomly at a per instruction level. Such a processor
would have multiple copies of all registers (accumulator,
program counter, instruction register, etc.), and the com-
binatorial logic would be used in a randomly alternating
way to progress the execution state of the threads repre-
sented by these respective register sets.

The simple 8-bit microcontrollers of smartcards do not
feature pipelines and caches and the entire state is defined
only by a very small number of registers that can relatively
easily be duplicated. The only other necessary addition
would be new machine instructions to fork off the [4]other
thread(s) and to synchronize and terminate them. Mul-
tithreaded applications could interleave some of the many
independent cryptographic operations needed in security
protocols. For the remaining time, the auxiliary threads
could just perform random encryptions in order to gener-
ate a realistic current pattern during the delay periods of
the main application.

C. Robust low-frequency sensor:

Bus-observation by e-beam testing becomes much easier
when the processor can be clocked with only a few kilo-
hertz, and therefore a low-frequency alarm is commonly
found on smartcard processors. However, simple high-pass
or low-pass RC elements are not sufficient, because by care-
fully varying the duty cycle of the clock signal, we can of-
ten prevent the activation of such detectors. A good low
frequency sensor must trigger if no clock edge has been
seen for longer than some specified time limit (e.g., 0.5
ms). In this case, the processor must not only be reset
immediately, but all bus lines and registers also have to be
grounded quickly, as otherwise the values on them would
remain visible sufficiently long for a voltage contrast scan.

Even such carefully designed low-frequency detectors can
quite easily be disabled by laser cutting or FIB editing the
RC element. To prevent such simple tampering, an intrin-
sic self-test must be built into the detector. Any attempt
to tamper with the sensor should result in the malfunction
of the entire processor. Such a circuit can be designed that
tests the sensor during a required step in the normal reset
sequence. External resets are not directly forwarded to the
internal reset lines, but only cause an additional frequency
divider to reduce the clock signal. This then activates the
low-frequency detector, which then activates the internal



3

reset lines, which finally deactivate the divider. The pro-
cessor has now passed the sensor test and can start normal
operation. The processor is designed such that it will not
run after a power up without a proper internal reset. A
large number of FIB edits would be necessary to make the
processor operational without the frequency sensor being
active.

Other sensor defenses against invasive attacks should
equally be embedded into the normal operation of the pro-
cessor, or they will easily be circumvented by merely de-
stroying their signal or power supply connections.

D. Destruction of test circuitry:

Microcontroller production has a yield of typically
around 95%, so each chip has to be thoroughly tested after
production. Test engineers – like microprobing attackers
– have to get full access to a complex circuit with a small
number of probing needles. They add special test circuitry
to each chip, which is usually a parallel/serial converter
for direct access to many bus and control lines. This test
logic is accessible via small probing pads or multiplexed via
the normal I/O pads. On normal microcontrollers, the test
circuitry remains fully intact after the test. In smartcard
processors, it is common practice to blow polysilicon fuses
that disable access to these test circuits. However, attack-
ers have been able to reconnect these with microprobes or
FIB editing, and then simply used the test logic to dump
the entire memory content.

Therefore, it is essential that any test circuitry is not only
slightly disabled but structurally destroyed by the manu-
facturer. One approach is to place the test interface for
chip n onto the area of chip n + 1 on the wafer, such that
cutting the wafer into dies severs all its parallel connec-
tions. A wafer saw usually removes a 80-200 m wide area
that often only contains a few process control transistors.
Locating essential parts of the test logic in these cut areas
would eliminate any possibility that even substantial FIB
edits could reactivate it.

E. Restricted program counter:

Abusing the program counter as an address pattern gen-
erator significantly simplifies reading out the entire mem-
ory via microprobing or e-beam testing. Separate watch-
dog counters that reset the processor if no jump, call, or
return instruction is executed for a number of cycles would
either require many transistors or are too easily disabled.
Instead, it is recommended simply not providing a pro-
gram counter that can run over the entire address space.
A 16-bit program counter can easily be replaced with the
combination of a say 7-bit offset counter O and a 16-bit
segment register S, such that the accessed address is S +
O. Instead of overflowing, the offset counter resets the pro-
cessor after reaching its maximum value. Every jump, call,
or return instruction writes the destination address into
S and resets O to zero. The processor will now be com-
pletely unable to execute more than 127 bytes of machine
code without a jump, and no simple FIB edit will change

this. A simple machine-code postprocessor must be used
by the programmer to insert jumps to the next address
wherever unconditional branches are more than 127 bytes
apart. With the program counter now being unavailable,
attackers will next try to increase the number of iterations
in software loops that read data arrays from memory to get
access to all bytes. This can for instance be achieved with
a microprobe that performs a glitch attack directly on a
bus-line. Programmers who want to use 16-bit counters in
loops should keep this in mind.

F. Top-layer sensor meshes:

Additional metallization layers that form a sensor mesh
above the actual circuit and that do not carry any critical
signals remain one of the more effective annoyances to mi-
croprobing attackers. They are found in a few smartcard
CPUs such as the ST16SF48A or in some battery-buffered
SRAM security processors such as the DS5002FPM and
DS1954.

A sensor mesh in which all paths are continuously mon-
itored for interruptions and short-circuits while power is
available prevents laser cutter or selective etching access to
the bus lines. Mesh alarms should immediately trigger a
countermeasure such as zeroizing the non-volatile memory.
In addition, such meshes make the preparation of lower
layers more difficult, because since the etch progresses un-
evenly through them, their pattern remains visible in the
layers below and therefore they complicate automatic lay-
out reconstruction. Finally, a mesh on top of a polished
oxide layer hides lower layers, which makes navigation on
the chip surface for probing and FIB editing more tedious.

The implementations of sensor meshes in fielded prod-
ucts however show a number of quite surprising design
flaws that significantly reduce the protection. The most
significant flaw is that a mesh breach will only set a flag
in a status register and that zeroization of the memory is
left completely to the application software. Note that a
common read-out technique involves severely disabling the
instruction decoder, therefore software checks for invasive
attacks are of little use.

A well-designed mesh can make attacks by manual mi-
croprobing alone rather difficult and more sophisticated
FIB editing procedures will be required to bypass it. Sev-
eral techniques can be applied here. The resolution of FIB
drilling is much smaller than the mesh line spacings, there-
fore it is no problem to establish contact through three or
more metal layers and make deeply buried signals accessi-
ble for microprobing via a platinum or tungsten pad on top
of the passivation layer. Alternatively, it is also possible to
etch a larger window into the mesh and then reconnect the
loose ends with FIB metal deposits around it.

G. Eliminating data dependent power consumption:

Simple binary encoding of data, [5]where one wire is used
to propagate one bit, results in power consumption propor-
tional to the number of state changes. Data transmission
along a bus consumes considerable power due to wire ca-
pacitance. Bus activity is observed as the Hamming weight



4

of the state changes.
One approach to reducing data dependent power con-

sumption is to use an alternative data encoding scheme.
For example, one-hot data encoding (1-of-n codes) con-
sume constant power to transmit data since just one wire
transitions for every symbol. 1-of-2 (dual-rail) and 1-of-
4 data encodings are commonly used in self-timed circuit
design [6].

1-of-n encoding is not sufficient to guarantee a data inde-
pendent power signature. Firstly, the path taken by each
wire is likely to vary, which can result in a difference in wire
load. This problem may be addressed by careful layout of
long buses and careful floor planning to keep random wire
lengths under control.

A second problem is the logic complexity variation be-
tween each wire. Care has to be taken when choosing stan-
dard cells to minimize this effect. Often this constraint
means that silicon area has to be sacrificed for greater se-
curity. However, most smart card chips are dominated by
memory requirements so additional area for logic adds little
to the final size of the chip.

Data dependent control presents a third problem. For
example, a hardware multiplier implemented using a shift-
and-conditional-add algorithm uses data-dependent power
if the add operation is only undertaken when required. A
similar problem occurs if early completion detection is used.
Ensuring that the same operations occur regardless of the
data seems to be the best way to deal with this problem.
An alternative approach is to add random noise to the
power signature, but randomness can often be removed by
signal averaging over repeated runs.

H. Defending against fault induction:

Self-timed designs are immune to clock glitch attacks.
Where the clock is required, for example in the clocked
serial smart card interface, it is easy to arrange that data
corruption should not result in sensitive data leakage.

A speed independent (SI) asynchronous circuit naturally
adapts to power supply voltage, thereby making power sup-
ply glitch attacks less successful. However, self-timed cir-
cuits cannot protect components like EEPROM which is
often used to store keys and error counters. Dual-rail en-
coding is often used to construct SI circuits. Two wires
are used to encode three states: clear, logic-0 and logic-1
(see Table 1). The unused fourth state (often 11) is typ-
ically not used by dual-rail circuits. However, from the
stand point of managing faults, the unused state must be
explicitly handled as an error condition which we shall call
alarm.

A1 A0 meaning
0 0 clear
0 1 logical 0
1 0 logical 1
1 1 alarm

Table 1: dual-rail encoding with alarm signal defined

Single point fault induction results in one of three be-
haviors:
1. Data can be suppressed which results in the circuit dead-
locking in the clear state.

2. A clear state is forced into a logic-0 or logic-1 state which
typically results in deadlock in the control path because
an extra data item has miraculously appeared. Deadlock
under these circumstances can be guaranteed.

3. A logic state is forced into the alarm state resulting
in data corruption. The alarm signal can be propagated
rapidly resulting in data being deleted and a global alarm
raised.

The fact that SI circuits deadlock when a fault occurs
is very useful because it paralyses the chip until a hard
reset is performed. This is in contrast to clocked circuits
where induced faults are in the same league as pulses due to
static and dynamic hazards, which are considered normal
operating behavior in many synchronous designs.

IV. Conclusion

A basis for understanding the mechanisms that make mi-
crocontrollers particularly easy to penetrate is presented.
With the restricted program counter, the randomized
clock signal, and the tamper-resistant low-frequency sen-
sor, some low-cost countermeasures that are considered
to be quite effective against a range of attacks have been
shown. There are of course numerous other more obvious
countermeasures against some of the commonly used at-
tack techniques which cannot be covered in detail in this
overview. Examples are current regulators and noisy loads
against current analysis attacks and loosely coupled PLLs
and edge barriers against clock glitch attacks. A combi-
nation of these together with field sensors and random-
ized clocks or perhaps even multithreading hardware in
new processor designs will hopefully make high-speed non-
invasive attacks considerably less likely to succeed. Other
countermeasures in fielded processors such as light and de-
passivation sensors have turned out to be of little use as
they can be easily bypassed.

There is really no effective short-term protection against
carefully planned invasive tampering involving focused ion-
beam tools. Zeroization mechanisms for erasing secrets
when tampering is detected require a continuous power
supply that the credit-card form factor does not allow. The
attacker can thus safely disable the zeroization mechanism
before powering up the processor. Zeroization remains a
highly effective tampering protection for larger security
modules that can afford to store secrets in battery-backed
SRAM, but this is not yet feasible for the smartcard pack-
age.

References

[1] O. Kommerling and M. G. Kuhn: ”Design principles for tamper-
resistant smartcard processors,” First USENIX Workshop on
Smartcard Technology,, TUGboat Volume 9, Issue 1 (1988)in
(Chicago, Il), pp. 9-20, USENIX, May 1999.



5

[2] P. C. Kocher: ”Timing attacks on implementations of diffe-
hellman, RSA, DSS, and other systems,” in Proc. 16th Inter-
national Advances in Cryptology Conference CRYPTO ’96,pp.
104-113, 1996.

[3] J. Jaffe,P. Kocher,and B. Jun, ,: ”Differential power analysis,”
in Proc. 19th International Advances in Cryptology Conference
CRYPTO ’99,pp. 388-397, 1999.

[4] P. Pallier H. Handschuh and J.Stern: ”Probing attacks on
tamper resistant devices,” in Cryptographic Hardware and
Embedded Systems - CHES 1999, Ç. K. Koç and C.Paar,
Eds.,1999,Lecture Notes in Computer Science No. 1717, pp. 187-
204.

[5] S. W.Moore, R. J. Anderson and M. G. Kuhn,: ”Improving
Smartcard Security using Self-Timed Circuit Technology,” in
Fourth AciD-WG Workshop, ,Grenoble, ISBN 2-913329-44-6,
2000.

[6] P. Adi Shamir: ”Protecting Smart Cards from Passive Power
Analysis with Detached Power Supplies,” in Cryptographic
Hardware and Embedded Systems - CHES 2000, Ç. K. Koç and
C.Paar, Eds.,1999,Lecture Notes in Computer Science No. 1965,
pp. 71-77.


