
INFORMATION SECURITY LABORATORY
333 Owen Hall Oregon State University +1 (541) 737-4861

On The Secure Evaluation Of Encrypted Polynomials Over Z/nZ

DRAFT

Colin W. van Dyke

vandyke@ece.orst.edu

Abstract

An interesting application of cryptography is in the reduction of software piracy and the protec-
tion of intellectual property within executable code. Many techniques have been developed for
software protection, none of which have provable security and are often circumvented relatively
easily by a malicious party. Provably secure software protection is achievable via cryptographic
methods, sometimes referred to as Mobile Cryptography, and is an active area of research in
engineering and mathematics. Concepts and ideas in cryptographic software protection rely on
fundamental ideas of abstract and boolean algebra, and the reader is therefore desired to have
some experience in these areas. This paper is intended to be a thorough coverage of the current
status of research in this field and to be used as a foundation for any interested in pursuing
research in this area. It introduces the reader to the fundamental theory required for comput-
ing with encrypted functions, and provides protocols which allow for the secure evaluation of
polynomials over the algebraic ring Z/nZ, where n is smooth. We will also address the bene-
fits and shortcomings in current research, and identify future directions necessary to make the
evaluation of encrypted functions feasible for Boolean circuits, which would theoretically allow
for the cryptographic protection of all software.

1

1 Introduction

Often in practice the real world of technological advancement is simply a cat-and-mouse game
between two parties, with one edging above the other until the converse is occurs. Nowhere
is this more evident than in the world of software piracy and intellectual property theft. The
software vendors are constantly developing methods of protecting their software from illegal
distribution and their algorithms from malicious decompilation, while pirates as well as driven
intellectual property thieves work to keep ahead of the protection mechanisms. With the con-
stant and rapid advancement of computing technology, and the growing market for software
vendors, it is increasingly necessary to develop stronger protection mechanisms to reduce rev-
enue and property loss. Oftentimes, protection mechanisms rely on the concept of ’security
through obscurity’, which is heavily frowned upon as inherently insecure due to the fact that
there is no concrete, mathematical proof of its strength against attack. Therefore, it is necessary
to build up a provably secure foundation for the protection of software against both piracy and
decompilation.

The concept of secure circuit evaluation was first studied by Yao in [yao82]. A two-player pro-
tocol for secure circuit evaluation was first introduced in [abadi90]. Abadi and Feigenbaum
were able to effectively present a secure method for two parties to hide information from each
other while still computing the desired results, but their method relied on a high number of
communication rounds between the two parties which has made it highly unpopular in prac-
tice. Moreover, their protocol dealt with the concept of computing with encrypted data (CED)
wherein the actual data being processed was encrypted. A notable advancement pertains to the
notion of computing with encrypted functions (CEF), where rather than evaluating encrypted
data the functions themselves are encrypted such that they maintain their executable properties.
This concept is often called function hiding, and is the primary emphasis of this paper.

The general goal of function hiding is twofold [loureiro99]:

• algorithm confidentiality (i.e. concealing the internal behavior of a program), and

• integrity of execution (i.e. if an attacker cannot derive the algorithm of the program,
then he is unable to find the best way of changing it to his benefit, as in a pirate
attempting to circumvent protection mechanisms).

The remainder of this paper is as follows: section 2 introduces the concept of evaluating en-
crypted functions along with the necessary theoretical prerequisites; section 3 introduces a
protocol for the secure evaluation of a special class of polynomials over rings; and section 4
presents the results of the work and areas of future research.

2 Evaluating Encrypted Functions

The evaluation of encrypted functions (EEF) seems to be the most promising method of code
protection. It allows for a vendor to distribute an encrypted, yet executable, form of their
software program which is provably secure against decompilation and piracy. In this section,
we will build a theoretical foundation for and introduce the necessary concepts for evaluating
encrypted functions.

2.1 History

The notion of evaluating encrypted functions is the logical extension of the work by Abadi and
Feigenbaum in [abadi90]. The most considerable contribution to this work came from Sander
and Tschudin in [tmc] while at the International Computer Science Institute in Berkeley, CA.
In their work they defined the basic prerequisites and foundations for computing with encrypted

2

functions, as well as the basic two-party protocol for such computations. We will now examine
these foundations.

2.2 Prerequisites

In order for us to successfully evaluate an encrypted function its encrypted form must be exe-
cutable. The general problem of evaluation of encrypted functions (EEF) can be described as
follows [sanderXX]:

Alice (the originating host) has an algorithm to compute function f . Bob (the remote
host) has an input x and is willing to compute f(x) for her, but Alice wants Bob to learn
nothing ”substantial” about f . Moreover, Bob should not need to interact with Alice
during the computation of f(x).

The general protocol for EEF is as follows [sanderXX]:

f(x) E(f)(x)

P(f)(x) P(E(f))(x) x

(1)

(6)

(2)

(3)
(4)

(5)

 Alice

 Bob

Figure 1: Protocol for Evaluating Encrypted Functions

(1) Alice encrypts f .
(2) Alice creates a program P (E(f)) which implements E(f).
(3) Alice sends P (E(f)) to Bob.
(4) Bob executes P (E(f)) at x.
(5) Bob sends P (E(f))(x) to Alice.
(6) Alice decrypts P (E(f))(x) and obtains f(x).

The above protocol has an optimal number of communication rounds in that it has no interac-
tions between the two parties other than the exchange of the program and the resulting value at
the end [sanderXX]. In order to realize such a scheme, some desirable properties of an encryption
system must be enforced. In the next section, we will explore those desirable properties.

2.3 Homomorphic Encryption Schemes

Our goal is to map a cleartext program P to an encrypted program PE such that Alice can
recover P (x) from PE(x) for some unknown input x of Bob. The encrypted program can not
just be any data stream but must be an executable program. As a result, most of the ordinary
data encryption techniques can not be applied. Furthermore, we want the cleartext program
and its encrypted form to be ”compatible” with each other[sander97]. In 1978, Rivest et al.
[rivestHES] identified that to process encrypted data the encryption scheme must have certain
homomorphic properties. Homomorphism is a fundamental concept of group theory, and com-
monly refers to the mapping of one algebraic system to a like algebraic system that preserves

3

structure [Herstein64]. A formal definition is as follows:

Definition: Homomorphisms
A mapping φ from a group G to a group G’ is said to be a homomorphism if for all
a, b ∈ G, φ(ab) = φ(a)φ(b).

It is important to note that on the left side of the previous relation (φ(ab)), the product ab is
computed in G using the product of elements of G whereas on the right side of this relation
(φ(a)φ(b)), the product is that of elements in G’ . This notion that φ(x + y) = φ(x) + φ(y)
is often referred to as a ”compatability” requirement. That is, φ(x + y) is compatible with
φ(x) + φ(y). At this point, it may be helpful to look at an example, which will illustrate the
fundamental idea of homomorphism in a familiar setting:

Example:
Let G be the group of integers under addition and let G’ = G. For the integer x ∈ G
define φ by φ(x) = 2x. That φ is a homomorphism then follows from φ(x+y) = 2(x+y) =
2(x) + 2(y) = φ(x) + φ(y).

For more on group theory and homomorphism, the reader is referred to [Herstein64].

2.3.1 Homomorphism and EEF

It is now important to show how homomorphic encryption schemes enable the realization of
EEF. In 1991, Feigenbaum and Merritt in [cite] extended the work of Rivest et al. in [rives-
tHES] and asked more specifically:

Is there a public-key encryption function E such that both E(x + y) and E(xy) are easy to
compute from E(x) and E(y)?

It can be readily identified that an encryption function having the above properties allows one
to evaluate polynomial expressions in the encrypted data without revealing the input and the
result. In addition, we can observe that for computing with encrypted polynomials, it is not
necessary to satisfy the multiplicative property. Rather, it is sufficient to support addition and
mixed multiplication . From this we can formulate the following definition [sanderXX]:

Definition: Let R and S be rings. We call an encryption function E : R→ S
• additively homomorphic if there exists an efficient algorithm PLUS to compute E(x + y)

from E(x) and E(y) that does not reveal x and y.
• mixed multiplicatively homomorphic if there exists an efficient algorithm MIXED-MULT

to compute E(xy) from E(x) and y that does not reveal x .

We can observe that the process of MIXED-MULT is implied through PLUS within Z/nZ cryp-
tosystems. That is, we can obtain E(xy) by simply adding E(x) with itself y times. Therefore,
any additively homomorphic scheme on Z/nZ is also mixed-multiplicatively homomorphic. Us-
ing the above properties, it can be readily seen that an encryption scheme satisfying them would,
theoretically, allow for EEF. The main problem is in identifying such a scheme, which has proven
fruitless until recently.

2.3.2 Algebraic Homomorphic Encryption Schemes

From a cryptographic viewpoint, the mathematical ”compatibility” requirement by using homo-
morphisms may be too strong. Recall that the map we use to transform a cleartext program into
an encrypted program should be hard to invert for an adversary. The problem is that there may
not be enough mathematical homomorphisms available as encryption functions or they may be

4

too easy to invert and therefore not suitable for our application. Consider, for example, the ring
Z/nZ where the only functions that satisfy the additively homomorphic requirement are linear
(x→ cx) which are insecure. However, the required ”compatibility” is considerably weaker in a
computational framework than in the mathematical framework. Instead of requiring for a map
between groups that φ(x + y) = φ(x) + φ(y), it is for computational purposes sufficient that
φ(x+ y) can be efficiently computed from φ(x) and φ(y) [sander97].

There are already schemes on Z/nZ that enable one to compute E(x + y) from E(x) and E(y).
Two examples are the Naccache-Stern public key encryption function [cite] and Ferrer’s ”privacy
homomorphism” [cite]. The one problem is that they are infeasible for computing with encrypted
functions. The first approach is computationally infeasible because in order to guarantee the
correctness of the results the number of calls to PLUS needed to perform CEF require the system
paramenter p to be exponentially large. The Ferrer privacy homomorphism is multiplicatively
homomorphic, but not mixed-multiplicatively homomorphic. The encryption function E would
have to be published in order to perform CEF. However, the security of this scheme relies on
the secrecy of E , thus making it unacceptable [sander97].

Alternatively, one can use a scheme based on exponentiation as follows:

The exponentiation map E : Z/(p− 1)Z → Z/pZ, x→ gx, for a prime p and a generator g
of (Z/pZ)x is additively homomorphic: the function PLUS is the simple multiplication
because E(x + y) = E(x)E(y). To recover x from y := E(x) one has to solve the
discrete logarithm problem y = gx which is believed to be hard. Alice chooses a prime p
such that the discrete logarithm problem is easy to solve (e.g., if p-1 has only small prime
factors she can use the Pohlig-Hellmann algorithm for computing discrete logarithms
efficiently). She further chooses a generator g of (Z/pZ)x which she keeps secret. Given
this additively homomorphic encryption scheme E : Z/nZ → Z/mZ one can realize CEF
for polynomials [sander97].

The security of this scheme relies on the secrecy of g . An additively homomorphic encryption
scheme based on discrete logarithms which does not have this shortcoming (i.e. which can
be published), was developed by Lipton and Sander in [cite]. Additionally, their scheme is
probabalistic, which significantly reduces the information leakage about the original polynomial
[sander97]. However, it is somewhat long and detailed. Alternatively, we will look at a useful
homomorphic encryption scheme in the next section which we can use as the foundation for our
protocol later in the paper.

2.3.3 A (useful) additively homomorphic encryption scheme

In a practical sense, we can rely on the Goldwasser-Micali encryption scheme that is, when
applied to a one-bit message, additively homomorphic on Z/2Z. In Goldwasser-Micali, Alice’s
private key is two large primes p and q and her public key is the modulus n = pq along with a
quadratic non-residue y (mod n) with jacobi symbol 1 [sandercodeprotection].

The main ideas of Goldwasser-Micali are concerned with whether, for a given number a, there
is x with x2 ≡ a (mod n). Such values of a are called residues. Their encryption scheme
E : Z/2Z → Z/mZ is based upon the following lemmas:

Lemma 1: If a,b are residues, then a · b is a residue. If a is a residue and b is not, then a · b
is not a residue.

Lemma 2: a is a residue mod n iff it is a residue mod p and a residue mod q.

Lemma 3: Let h = p−1
2 . If a is a residue mod p, ah ≡ 1 (mod p). If a is not a residue,

5

ah ≡ −1.

These imply that, if p and q are known, it is easy to decide whether a is a residue. The en-
cryption scheme depends on the assumption (Quadratic Residue Assumption) that this problem
is very difficult if p and q are unknown. In addition, this encryption scheme draws upon the
following:

Lemma 4: Half of the numbers from 1 to (p - 1) are residues mod p. Take the numbers from 1
to n and leave out those divisible by p or by q. Divide the remaining (p-1)(q-1)
numbers into four groups according to whether they are residues or not modulus p
and also modulus q. There are (p−1)(q−1)

4 numbers in each group.

Numbers which are not residues mod p and also not residues mod q are called non-residues.
For example, if p = 5 and q = 7, the residues mod 35 are 1, 4, 9, 16, 29, 11 (29 ≡ 82, 11 ≡ 92;
note that we did not include 25 and 14, which are divisible by p and q). The non-residues
must be congruent to 2 or 3 mod 5 and 3, 5 or 6 mod 7, so they are 17, 12, 27, 3, 33 and
13. The encryption scheme is concerned with the union of the set of residues and non-residues,
denoted as Z1

n. As exactly half of the members of Z1
n are residues, just saying that a number

is a residue is only correct half of the time. The QRA states that no algorithm that runs in
a reasonable amount of time will do better than this. In addition to announcing n, the entity
receiving messages announces one non-residue y, as previously stated. To send a sequence of
binary numbers, the sending entity converts them as follows: for each number in the sequence,
an x is chosen randomly. A zero value is converted into x2 mod n (a residue) and a one value
is converted into yx2 mod n (a non-residue). Based on lemma 4, each value zero or one in the
sequence can be converted based on the choice of x into one of (p−1)(q−1)

4 different numbers.
For instance, if the message is of length 500 bits and p, q ≈ 10100, the message can be encoded
into 1

4 · 10100000 different possible ciphertexts. By lemma 1, zeros are converted to residues and
ones are converted to non-residues. As the receiving entity knows p and q, they can efficiently
decode the message using lemmas 2 and 3 [citeweb].

The Goldwasser-Micali encryption scheme is additive because the encrypted sum of two values
x and y is obtained by multiplying their encrypted values modulo n (i.e., E(x+ y) = E(x)E(y))
[sandercodeprotection]. A better scheme which is homomorphic for rings Z/nZ, n smooth and
≥ 2, was identified by Lipton and Sander in [cite].

Proposition: The Goldwasser-Micali encryption scheme is additively homomorphic on Z/2Z.
For this encryption function E we have E(a + b) = E(a)E(b).

Proof: We define the canonical isomorphism ψ : Z/NZ →
⊕k

i=1 Z/NiZ, x 7→ (x mod N1, ..., x mod
Nk). So, an element x mod N is a residue in Z/NZ iff x mod Ni is a residue in Z/NiZ ∀ i. In the
Goldwasser-Micali scheme, we have Ei : Z/2Z → Z/NiZ. Abstractly, we can identify the new
encryption process of an element a = (a1, ..., ak) under E with the process of first encrypting ai

with Ei by the value Ei(ai) in Z/NiZ and then combining these values together via the Chinese
Remainder Theorem. The proof continues formally [sandercodeprotection]:

E(a)E(b) = ψ−1(ψ(E(a)E(b)))
= ψ−1[(E1(a1), ..., Ek(ak))(E1(b1), ..., Ek(ak))]
= ψ−1[(E1(a1)E1(b1), ..., Ek(ak)Ek(bk))]
= ψ−1[(E1(a1 + b1), ..., Ek(ak + bk)]
= E(a+ b)

Q.E.D.

Now that we have identified a useful additively homomorphic encryption scheme, we can continue
to evaluate the necessary steps to achieve EEF for the important class of rings Z/nZ.

6

3 Secure Evaluation of Encrypted Polynomials over Z/nZ
In this section we will present a protocol introduced in [sanderXX] that allows for evaluation
for encrypted polynomials (EEP) over rings Z/nZ which executes non-interactively. The one
restriction of this protocol is that it considers only polynomial/rational functions, which limits
its real-world applicability. The necessary steps for widespread application of function hiding
are covered in section 4.

3.1 A Protocol for Evaluating Encrypted Polynomials over Z/nZ
Based on the concepts outlined in section 2.3, we can give a protocol for solving EEF for en-
crypted polynomials for the important class of rings Z/nZ. The protocol is outlined as follows:

Let E : Z/nZ → S be an additively homomorphic encryption scheme. We can implement non-
interactive EEF for polynomials p ∈ Z/nZ[X1, ..., Xs] with E.

Proof: Note that every additively homomorphic encryption scheme on Z/nZ is also mixed-
multiplicative as shown in section 2.3.1. Let p be the polynomial

∑
ai1...isX

i1
1 ...X

is
x

(1) Alice creates a program P(X) that implements p in the following way:
• each coefficient ai1...is

of p is replaced by E(ai1...is
),

• the monomials of p are evaluated on the input x1, ..., xs and stored in a list L :=
[..., (xi1

1 ...x
is
s), ...],

• the list M := [..., E(ai1...isx
i1
1 ...x

is
s), ...] is produced by calling the function MIXED-

MULT for the elements of L and the coefficients E(ai1...is),
• the elements of M are added up by calling PLUS.

(2) Alice sends the program P to Bob.

(3) Bob runs P on his private input x1, ..., xs and obtains P (x1, ..., xs).

(4) Bob sends the result P (x1, ..., xs) = E(p(x)) back to Alice.

(5) Alice decrypts the result by applying E−1 and obtains p(x).

Thus the security of the program P and the input x1...xs remains intact. Note the minimal
number of communication rounds between the two parties. The realization of the aforementioned
protocol allows for a number of security enhancements to the executing code. Most notably, the
client (Bob) is forced to have their result decrypted by the server (Alice), which allows for strict
enforcement of program distribution. If a client which is not authorized to execute the program
requests for the decryption of their generated output, the server can simply refuse the request.
This makes the process of pirating software much more difficult if not impossible. In addition,
the growing trend of ’software as a service’ can be realized in that the server can distribute the
program P for free, and charge for the decryption of the generated results on a per-use basis
[sanderprogramsecurity]. We will now look at the security of EEP, and what if any, information
is leaked in the process.

3.2 Security of EEP over Z/nZ
It is necessary for us to analyze the security of this protocol and the information, if any, that is
leaked. The aforementioned protocol leaks information about the coefficients of the unencrypted
polynomials, also known as the skeleton of f . Note that, depending on the value of n used,
the leakage may reveal all information needed to reconstruct the original polynomial. Take, for
instance, an encryption function E : Z/2Z → Z/mZ, where m = 2; given the elements of the

7

message space {0,1}, any non-zero coefficient is easilly obtained as 1.

A formal analysis of the security of our protocol can be explained as follows: E(f) can be easily
constructed from the program P . A set of monomials U containing the monomials with non-zero
coefficients of f is inherently revealed by our protocol. This set U is called the skeleton of f .
If we think of the monomials of U as given in a certain order we can identify f with the list of
coefficients of f that we call m . We can also identify E(f) with its list of coefficients E(m) .
So, the message spaces Mn consist of n-tuples of elements from Z/nZ on which our encryption
function E operates componentwise. We can now say that if our protocol does not leak any
information about f except its skeleton, it does not leak any (useful) information when applied
to elements of the message spaces Mn. Given this information, we can say that our encryption
scheme is polynomial time indistinguishable [sanderXX].

Definition: Polynomial Time Indistinguishable
An encryption function is called polynomial time indistinguishable if, when applied to
elements of its message space, it does not leak any important information.

Theorem: Let E be an additively homomorphic encryption scheme on Z/nZ. Our protocol
realizes non-interactive EEF for polynomials f ∈ Z/nZ[X1, ..., Xs], and is
polynomial time indistinguishable. Given these properties, no information is leaked
about f except its skeleton.

The additively homomorphic encryption scheme covered in section 2.3.3 is polynomial time in-
distinguishable under the hardness of the Power Residue Hypothesis, which is a generalization
of the Quadratic Residue Hypothesis to residues of higher degree. So, if one allows the leakage
of the skeleton, the problem of non-interactive EEF for polynomials in Z/nZ[X1, ..., Xs] with n
smooth, is solved [sanderXX].

It is important to note that there are special cases where the leakage of the skeleton, even for a
polynomial time indistinguishable encryption scheme, may allow for an adversary to recover the
full polynomial f . As an example, assume that the adversary knows the encrypted function f
is an RSA function (x→ xd), which has only a single non-zero coeffecient. If the input/output
pairs (x,f(x)) are known, then an adversary can find f and consequently d by evaluating every
element of U on the inputs x , with difficulty depending on the computational resources of the
attacker [sanderXX].

It is also important to note a special attack against the previously mentioned protocol called
the coefficient attack. In this attack, Bob can recover the plaintext coeffecients of f even though
they are not explicitly leaked by our protocol. The attack proceeds as follows: Bob, instead
of sending his program output to Alice for decryption, sends her the encrypted coefficients of
E(f). According to the protocol, Alice would decrypt them and send Bob the very information
she was attempting to hide. This is a general problem that EEF schemes have to face if the
encryption of some ”data” about the function and the output of the encrypted function are
encrypted by the same scheme. This is defeated via a more complicated protocol outlined in
[sanderinfomrationhiding].

4 Conclusions and Future Work

Using the above scheme, it would seem that the problem of EEF for polynomials is solved.
However, this covers just a small subset of the problem. Theoretically, if one were able to obtain
promising results for boolean circuits, the problem of EEF would be solved. To this date, this
has proven to be a much more difficult problem.

8

In [abadi90], Abadi and Feigenbaum described a protocol in which one could securely evaluate a
Boolean circuit in encrypted data. They further reduced EEF for boolean circuits to processing
encrypted data by representing the Boolean circuit that is to be hidden as data fed to a universal
Boolean circuit. This reduction, for practical application, is infeasible. It is true that a Boolean
circuit f : Bn → B can be realized by substituting in a universal Boolean circuit U : Bn → B
certain variables specifying the function f. However, for a function U : Bn → B that is uni-
versal for the class of boolean circuits {f : Bn → B}, we have that m ≥ 2n

log(2n+2) . Thus, we
get an exponential blowup by using universal Boolean circuits [sander97]. The main question
now is this: how does the above work with algebraic circuits relate to Boolean circuits? Under
reasonable assumptions, every algebraic circuit on finite fields can be simulated efficiently by
Boolean circuits. The converse of this is wide open and is one possible approach to CEF for
boolean circuits. Shifting from a Turing machine model to Boolean circuits is not a restriction:
every language in P (which can be recognized by a deterministic Turing machine in polynomial
time), can be recognized by uniform Boolean circuits of polynomial size [citefrom sander97].
Therefore, there may be programs that cannot be efficiently simulated using algebraic circuits
but which are feasible for Boolean circuits. One approach for CEF for Boolean circuits concedes
that some information about the original circuit may be revealed. The requirement to hide all
information about a Boolean circuit is too strong as it leads to the use of universal Boolean
circuits which we previously identified as computationally infeasible. For many applications it
may be sufficient to hide only partial information about the Boolean circuit, allowing one to
circumvent the construction of a universal Boolean circuit. This area is open to research, and
to this date has not been solved.

Another limitation is the fact that evaluating functions in encrypted form yields encrypted re-
sults when utilizing homomorphic properties. An interesting extension of this work would be
to possibly construct a protocol such that the result produced by Bob’s execution of P over his
input x1...xs produced a result such that it was in plaintext form, thus reducing the required
communication rounds to one. Note, however, that in doing this some security provisions of
EEF are nullified, such as the ability to constrain who can execute the encrypted program.

Note: The author admits that the previous information is a brief introduction to the theoretical
aspects of EEF for boolean circuits. As a result, another paper will be written which is in-
tended to be a broad coverage of the various concepts and ideas necessary for a solid theoretical
foundation for research in the field of computing with encrypted functions over Boolean circuits.

9

