Cryptographic Hardware Architecture

Savithri Venkatachalapathy
Department of Electrical & Computer Engineering,
Oregon State University, Corvallis, Oregon 97331 -USA.
E-mail: venkasav@ece.orst.edu
May 22, 2002

Abstract— In this paper we have tried to present
a descriptive description of Cryptographic Hard-
ware. Cryptography itself is a math that provides
the security in many technologies, including all
digital certificate and encryption systems. Either
Software or Hardware implementations of cryptog-
raphy can be used. The Hardware implementation
is secure, faster, but comes at an exorbitant price.
To this extent the current trends in Hardware im-
plementations have a promising future for cost ef-
fective hardware crypto-systemss. In this regard
we try to give a summary of Cryptography Proces-
sor Architecture, Dynamic implementation of one
of the AES standards. For this, we have chosen
the Serpernt Block Cipher algorithm. And finally
the comparision of the performance of FPGA im-
plementation of five standard AES algorithms and
determine their suitability for FPGA implementa-
tion.

I. INTRODUCTION

With the advancements in communication tech-
nologies and the indomitable growth of Inter-
net has led to a different mode of bussiness and
commerce:E-commerce. Along with this, came
the requirement to have secured, portable and
energy-efficient connections between the partic-
ipating entities. To this end the development
of Cryptographic algorithms namely RSA, Rijn-
dael, Serpent Cipher etc have eventually created
a standard for the cryptographic systems, called
the AES standard. We have tried to summarise
some of the algorithms and how they can be im-
plemented in Hardware and the performance eval-
uation of the same.

The paper is organised as follows. Section 1
gives an introduction. Section 2 talks about the
Cryptography Processor Architecture with em-
phasis on domain-specific reconfigurable process-
ing for asymmetric cryptographic applications.
Section 3 talks about the Dynamic FPGA imple-
mentation of the Serpent block cipher algorithm.
Section 4 compares the performance of the FPGA
implementation of the five AES algorithms. Sec-
tion 5 summarises the FPGA implementation and

performance evaluation of a hypothetical proces-
sor based on an ingenious algorithm. Section
6 draws a conclusion to this scientific chronicle
which gave a sojourn of Cryptographic Hardware
implemntations. Section 7 is the references and
bibliography.

II. CRYPTOGRAPHIC PROCESSOR
ARCHITECTURE

The constarint of using sopftware -based tech-
niques in order to achieve the algorithm agility re-
quired to maintain compatibility resticts to only
providing secure communications with compati-
ble systems. The software approaches are slow,
but energy efficient. Hardware based implemen-
tations on the other hand are fast, energy and
computationally efficient but they are limited on
only one type of asymmetric cryptographic algo-
rithm.In this context, a new Domain Specific Re-
configurable Cryptographic Processor (DSRCP)
is implemented as described in [4].

In conventional reconfigurable applications
such as Field Programmable Gate Arrays (FP-
GAs). The architecture goals of the device are
to provide a large number of small, yet power-
full logic cells, embedded within a flexible pro-
grammable interconnect. The overheard associ-
ated with making such a general purpose com-
puting device ultimately limits its energy effi-
ciency, and hence its applicaion is in energy-
constrained environments. A conventional re-
configurable logic device attempts to cover as
much space as possible given its architectural con-
straints in terms of technology and logic/ routing
resources. This results in a considerable amount
of overhead that is not necessary given a spe-
cific subset of functions. The DSRCP differs
from conventional reconfigurable implementations
in that its reconfigurability is limited to the subset
of functions, called a domain required for asym-
metric cryptography.This domain requires only a
small set of configurations for perofrming all of
the required operations over all possible problem
families as defined by the IEEE P1363. As a re-
sult the configuration overhead is smaller in terms

of performance, energy efficiency, and reconfigu-
ration time. The Instruction Set Architecture (
ISA) of the DSRCP sticks to the IEEE P 1363
description document. It also has other required
arithmetic functions is tabulated in order to de-
termine the ISA for the required processor. The
resulting instruction format of the DSRCP is a
30-bit word partitioned as shown in Figure 2.

Figure 1: Instruction word of DSRCP.

opcode rd rs0
(29-25) (24-21) (20-17)

length

rsl rs2
(16-13) (12-10) (9-0)

Architecture of the DSRCP: The processor con-
sist of four main architectural blocks: the global
controller and microcode ROMs, the I/O inter-
face, the reconfigurable datapath, and an em-
bedded SHA-1 hash function engine. The in-
clusion of a hash gfunction was desirable as the
key derivation primitives contained wiothin the
IEEE P 1363 call for this functionality. DSRCP
uses both hardwired and microcode ROM-based
control functions. This multi-tiered approach is
required as various instructions within the DSR-
CPs ISA are implemented using other instructions
within the ISA.

The microcode approach is chosen due to its
simplicity and extensibility as modifications and
enhancements of the ISA can be accomplished
with a minimal amount of design effort by mod-
ifying the microcode ROM contents. The global
controller is responsible for disabling unused por-
tions of the circuitryin order to eliminate any nec-
essary switched capacitance. The slowdown strat-
tegy is dictated by the current witdh of the pro-
cessor and enables the datapath to be shutdown in
32 32-bit increments. SET_LENGTH (length) is
used to set the current width of the processor. All
operands accessed and operated by the datapath
are assumed to be the size of the current width of
the processor., as set by the SET_LENGTH. This
length is used by the control logic to determine the
number of iterations that need to be performed by
the various operations.

I/O Interface of the DSRCP: Operands used
within the processor can vary in size from 8 - 1024
bits, requiring the use of a flexible I/O interface
that allows the user to transfer data to/from the
processor in a very efficient manner. A 32-bit in-
terface is used which is very well suited to existing
processors annd systems which are predominently
built upon 32-bit interfaces. The choice enables
fast operand transfer onto and off of the proces-
sor, requiring at most 32 cycles to transfer the
largest possible operand.

Reconfigurable Datapath: The primary compo-
nennt of the DSRCP is the reconfigurable dat-
apath, which consists of four major functional
blocks an eight word register file, a fast adder
unit, a comparrator unit, and the main reconfig-
urable computation unit. The dayttapath is im-
plemented using a very efficient bitsliced imple-
mentation in order to minimize its size and the
corresponding wiring capacitance of its control
signal generation/distribution. The registetr file
is chosen to be eight words as it is the minimum
number required to implement all of the functions
of the datapath. The number of read and write
ports within the register file is dictated by the
requirement to be able to perform single cycle,
two operand instructions which generate a write-
back value. In certain cases two write ports could
have proved useful, but the infrequency of the op-
eration does not merit the additional overhead.
The fast adder is capable of adding/subtracting
two n-bit operands in four cycles using the hy-
brid carry-bypass and carry-select technique nd
optimised for a bitsliced implementation. The
unit features a local register to store the previ-
ous sum result, a feature thatr s used in modular
addition/subtraction and inversion routines.The
adder unit can also right shift its result, as re-
quired by the modular inversion algorithm used
within the DSRCP.

Reconfigurable Logic Cell Design: The DSRCP
is capable of performing a variety of algorithms
using both conventional and modular integer
fields, as well as binary Galois Fileds. These op-
erations are implemented using a single compu-
tation unit that can be reconfigured on the fly
to perform the required operation. The possible
configurations are Montgomery /Multiplication/
reduction, GF(2") multiplication and inversion.
All other operationa are handled by other units
such as the fast adder and the comparator or im-
plemented in the microcode.

III. DynamMIic FPGA IMPLEMENTATION OF
THE SERPENT BLOCK CIPHER ALGORITHM

A Jbits implementation of Serpent Block Ci-
pher in a FPGA is described here. Jbits pro-
vides a JAva based Application Programming In-
terface(API) for the run-time modification of
the configuration bitstream. This allows dynamic
circuit specialization based on a specific key and
mode(encrypt or decrypt). Subkeys are com-
puted in Software and treated as constants in the
Serpent datapath. The resulting logic optimiza-
tion produces a circuit that is half the size and
twice the speed of a static, synthesised implemen-
tation. With a throughput of over 10 Gigabits per

second, the JBits implementation has sufficient
bandwidth for SONET networks. The NIST so-
licited candidates for a successor to DES,w hich is
to be called the Advanced Encryption Standard(
AES). AES, like DES is a private key algorithm
which uses teh same key for both encryption and
decryption. Field Programmable Gate Arrays are
frequently used to implement cryptographic algo-
rithms.

Serpent Algorithm: Serpent algorith as given
[7] is a substitution-permutation (SP) network
that uses 32 rounds. The output of a round i is
the input to round(i + 1). The algorithm has two
modes of implementations: standard and bitslice.
The standard mode operates on individual bits or
groups of four bits, while the bitslice mode im-
proves software efficiency by operating on entire
32 bit-words. Serpent Software using the bitslice
optimization encrypts at roughly 32 Mbits/sec on
a 200 MHz pentium.

Key Scheduling: If required the user supplied
key is first padded to 256 bits. This is done by
assignin a 1 to the most significant bit and a 0
to the remaining bits. The key is stored as eight
32 bit-words. This is then used to generate the
prekeys.

Run time configuration: The run time opti-
mization of FPGAs to the problem instance at
hand can have considerable speed and area ad-
vantages. For example a dynamic implementation
of the DES algorithm exceeds the performance
of the fastest known DES ASIC. But, most sys-
tems do not exploit the run time reconfiguration
(RTR) of SRAM-based FPGAs. This is primar-
ily because there is no support for RTR in the
standard design capture, verification and imple-
mentation tools. The conventional netlist- based
FPGA design flow is the same as for ASICs, and
has far too much time and memory overhead to
be used in real time or embedded environments.
RTR is most easily controlled with a micropro-
cessor. Many systems already make use of one or
more microprocessors for those operations thgat
do not require hardwrae speeds. Software can di-
rectly create or modify the FPGA’s configuration
with a suitable Application Programming Inter-
face(API). This Serpent model readily supports
hardware/software co-design, since the integra-
tion of hardware and software occurs early in the
development effort.

IV. PERFORMANCE EVALUATION OF AES
ALGORITHMS USING FPGAs

In this section we look the the comparision of
the performance of the FPGA based implemen-
tations of five AES algorithms(MARS, RC6, Ri-

jndael,Serpent and Twofish. Among the various
time-space implementation tradeoffs, the focus is
primarily on time performance. The time per-
formance metrics are throughput and key setup
latency. Throughput corresponds to the amount
of data processed per unit time while the key set
up latency time is the minimum time required to
commence encryption after providing the input
key. Time performance and area requirement re-
sults are as given by [5] is summarised in the Ta-
ble 1.

Table 1: Performance comparision with ASIC

implementations.
AES throughput | Key-setup
MARS 1.79 4.87
RC6 1.09 33.76
Rijndael 1/1.71 —
Serpent 1/1.35 1/4
Twofish 1.64 1/3

V. DESIGN AND IMPLEMENTATION OF A
2002KCRYPTO-PROCESSOR

Now, in this section we give you a descrip-
tion of the new 2002KCrypto-Processor devel-
oped by the Avnee Incorporation. This is con-
isdered as a major breakthrough in the filed
of Cryptography. Given below a brief outline
of the 2002KCrypto architecture and the build-
ing blocks. The 2002KCrypto core has 4 major
building blocks namely: Key-Storage, Compara-
tor, nonary-converter and reconfigurable datap-
ath. The Key-Storage has a maximum storage
capacity of several Gigabytes, exceeding the size
of any commercially available cryptographic de-
vice. Its primary purpose is to store the keys(
both public and private). The nanotube tech-
nology is used in the manufacture of this high
speed storage structure.The keys are encrypted
using the nonary-converter block. This block op-
erates on base9 numbers. Every client who reg-
isters with this device is given a unique private
key and a public key which is encrypted using the
nonary-converter and stored in the key-storage.
When another clientB wants to set up a secure
connection with clientA, then they both send their
public keys to this processor, which sends back
an encrypted base-9 number which can be de-
crypted using the private key of the clients. Then
the clients send the decrypted code back to the
processor. The processor further decrypts it and
compares with the already established private key
for both client A and clientB. If they match, a con-
nection is set up or else it is rejected.

VI. CONCLUSIONS

Cryptography has come into limelight more
than ever due to the increased need for secure con-
nection, at the same time having a reliable and
faster connection. In this regard the NIST has
defined some pre-set standards which are to be
abided by all the Cryptographic Hardware Sys-
tems. In this paper we tried to give a bird’s
eye view of Cryptographic Hardware Architec-
ture, Cryptographic Algorithms and FPGA im-
plementations. FOr further information the ref-
erence and bibliography is provided.

VII. REFERENCES AND BIBLIOGRAPHY

REFERENCES

[1] W.P. Choi L.M. Cheng, “Modelling the Crypto-
Processor from Design to Synthesis,” Cryptographic
Hardware and Embedded Systems (CHES), pp. 25-36,
August 1999.
bibitemCHES:DES ASIC Perry Roberston et al.
D. Craig Wilcox, Lyndon Pierson, “A des asic suitable
for network encryption at 10 gbps and beyond,” Cryp-
tographic Hardware and Embedded Systems (CHES),
pp. 3748, August 1999.

[2] J.-H. Chung E. Hong and C. H. Lim, “Hardware de-
sign and performance estimation of the 128-bit block
cipher crypton,” Cryptographic Hardware and Embed-
ded Systems (CHES), pp. 49-60, August 1999.

[3] Johann Groschd, “High-Speed RSA Hardware Based
on Barret’s Modular Reduction Method,” Crypto-
graphic Hardware and Embedded Systems (CHES), pp.
191-203, April 2000.

[4] James Goodman and Anantha Chandrakasan, “An
Energy Efficient Reconfigurable Public-Key Cryptog-
raphy Processor Architecture,” Cryptographic Hard-
ware and Embedded Systems (CHES), pp. 175-190,
April 2000.

[5] ToAndreas Dandalis, Viktor K. Prasanna, and Jose
D.P. Rolim, “A Comparative Study of Performance of
AES Final Candidates Using FPGAs,” Cryptographic
Hardware and Embedded Systems (CHES), pp. 125—
140, April 2000.

[6] Colin D. Walter, “Data Integrity in Hardware for Mod-
ular Arithmetic,” Cryptographic Hardware and Em-
bedded Systems (CHES), pp. 204215, April 2000.

[7] Cameron Patterson, “ A Dynamic FPGA Implemen-
tation of the Serpent Block Cipher,” Cryptographic
Hardware and Embedded Systems (CHES), pp. 141—
155, April 2000.

