
1

Development of Side Channel Attacks
Jose Gallegos

Department of Computer Science
University of California, Santa Barbara, CA 93106

E-mail: {jlgallegos}@cs.ucsb.edu

Abstract— In this paper I will present five types of attacks
that have been introduced in several papers. These attacks
use different channels, side channels, to try to break crypto-
graphic algorithms like RSA. The attacks range from simple
timing attacks to attacks that recover information left from
processor components, i.e. caches and branch predictors.

I. Introduction

Side channel attacks allow an attacker to determine se-
crets by viewing information gathered from channels other
than direct communications. These other channels can be
the amount of time a process takes, the caches that it uses,
or the branches that it take. As will be seen later, the secu-
rity of the RSA algorithm is based off of the fact that some
information can be kept a secret. Once this secret is dis-
covered by an attacker, the attacker can impersonate the
owner of the secret, signatures, or read encrypted data only
meant to be read by the owner of the secret, decryption.
Throughout the rest of this paper I will present the main
ideas, in attacks that can obtain this secret information.

In sections 3-7 I will briefly describe side channel attacks
presented in several papers. In section 3 we will see timing
attacks presented in [1]. Section 4 will be about practical
timing attacks in [2]. Section 5 will cover cache attacks
presented in [3]. Section 6 will contain branch prediction
attacks in [4]. The last attack, simple branch prediction
analysis [5], will be contained in section 7. Before getting
into the attacks I will briefly describe RSA, the crypto-
graphic algorithm that is under attack in most of these
papers. In this paper I will assume that the reader knows
how caches and branches work, so I will not be discussing
those details in this paper.

II. Brief Overview of RSA

Developed by Rivest, Shamir, and Adleman, RSA is a
public-key system that also allows for digital signatures
[6]. RSA solved the problem of trying to figure out how
to securely communicate without having to exchange keys
before hand. RSA uses two keys for each person, one public
key (e) used for encryption and verifying a signature and a
private key (d) used for decryption and creating signatures
and another public value (N) for modulus where N = p ∗ q
(p,q are both large prime numbers). We use p, q to figure
out d, e: d ∗ e = 1 (mod (p− 1) ∗ (q − 1)).

Decryption: M = Cd mod N
Encryption: C = Me mod N

D is the only part that needs to be kept private, because
with it anyone else would able to decrypt messages that are

meant for the owner of d or be able create signatures that
belong to the owner of d. Which means that RSA is only
secure if d can be kept secret. It has been shown that since
N is the product of two large prime numbers, it would be
too difficult to factorize N to compute d from e [6]. Since
directly trying to figure out d is too difficult, attackers had
to turn to these side channel attacks to figure out d.

The following are two methods used to implement RSA.
Both algorithms have timing differences depending on the
private key, which could be taken advantage of by side
channel attacks. The attacks that I will present in the
rest of this paper will show what can be taken advantage
of.

Square and Multiply Method

1: S = M
2: for i from 1 to n− 1 do
3: S = S ∗ S (mod N)
4: if di = 1 then
5: S = S ∗M (mod N)
6: return S

Montgomery Exponentiation

1: Compute n’ using Euclid’s algorithm
2: M̄ = M ∗ r mod n
3: C̄ = 1 ∗ r mod n
4: for i = k − 1 to 0 do
5: C̄ = MonPro(C̄, C̄)
6: if ei = 1 then C̄ = MonPro(M̄, C̄)
7: C = MonPro(C̄, 1)
8: return C

Montgomery Product

1: t = ā ∗ b̄
2: m = t ∗ n′ mod r
3: u = (t + m ∗ n)/r
4: if u ≥ n then u = u− n
5: return u

III. Introduction To Timing Attacks

In the 1996, the idea of using information collected
from other channels to break RSA came from a paper by
Kocher[1], which introduced the dangers of timing attacks.
In this paper, Kocher brought attention to the informa-
tion that could be extracted from data dependent execution
paths. Kocher mentioned how changes could be caused by
optimizations in branches and cache hits. The attack he
presented in his paper was applied to a smartcard and was
able to determine the private key with 2450 measurements.



2

IV. Network Attacks

In 2003 Brumley and Boneh showed that not only smart
cards were in danger of becoming victims of timing attacks
[2]. Brumley and Boneh showed that RSA implemented
OpenSSL could also be broken. This is the attack that
they described: Assuming we have q0, ..., qi−1 of the secret
key we try to figure out the qi th key.

Step 1: There guess, g, would be equal to the first i bits
of q and would set the rest to 0. Then they would get a
second guess, ghi, equal to g except for the ith which is set
to 1. This would leave two cases: if qi is 1 g < ghi < q else
g < q < ghi
Step 2: Compute ug = g ∗R−1 andughi

= ghi ∗R−1
Step 3: Get the time to decrypt ug(t1) and ughi

(t2)
Step 4: Compute T = t1 − t2. If T is small then qi is 1,
else T is large then qi is 0.

In order to increase the chances that qi would be cal-
culated correctly, neighborhood size and sample size were
introduced. For each guess, g, the attacker would test
g + 1, . . . , g + n, giving a neighborhood size of n. Each
of these g + i would be tested s times, where s would be
the sample number. Brumley and Boneh’ s attack was used
to discover the secret key in processes that ran on the same
machine and processes separated by a network. It took over
1 million queries for this attack to work.

Figure 1: The results of a Percival Cache Attack on RSA

V. Cache Attacks

In 2005, Percival came out with an attack on a cache
system [3]. Like the rest of attacks presented in this paper,
Percival’s attack attempted to discover the secret key of
RSA. Percival attack needed two processes, a crypto pro-
cess and a spy process, which had access to the same cache.
The spy process continuously read the cache blocks and
measured the time it took to read. Whenever the crypto
process used a cache block, the spy process would have seen
a change in the read time. When the crypto process was
done executing, the attacker would have a record of the
squaring and multiplication operations used. This would
mean the attacker could attempt to start guessing the se-
cret key used for RSA. The results of Percival’s attack are
shown in Figure 1 which is from [3]. With one query this
attack was able to recover 310 bits out of 512 bits of the
private key.

Figure 2: The results of a trace-driven attack on RSA

VI. Branch Prediction Attacks

In 2007, attacks described in Acıiçmez, Koç and Seifert’s
paper [4] allowed the attacker to go beneath security mech-
anisms, i.e. memory protection, sandboxing, and virtual-
ization, and use information from a key architecture unit,
the branch predictor, to help extract the secret key.

Here is the basic outline for this attack. There are two
processors: a spy process and the crypto process. The
crypto process computes the cipher text from a plain text.
The spy process continuously executes branches in order to
fill up the BTB and measures the time it takes to run. The
idea would be that if the crypto process never branched
the spy process would always run quickly, because all of its
branches would be in the BTB. From the RSA algorithm
we know that this isn’t the case, branches are taken dur-
ing the crypto process. Since the BTB is filled with spy
branches, whenever a crypto branch is taken it would have
to evict a spy branch to make room. This eviction will
be noticed since the spy process is continuously executing
its branches, a missing branch in the BTB will result in a
longer execution time for the spy process. This process will
be able to determine the path of execution the crypto pro-
cess took, from this the attacker would be able to extract
the private key. Figure 2, taken from [4], shows the results
of this attack. With 10000 measurements, this attack was
able to extract the private key.



3

Figure 3: Results of the improved trace driven attack

VII. Simple Branch Prediction Analysis Attacks

Later on in 2007, Acıiçmez, Koç and Seifert came out
with another paper [5] that improved on a trace driven
attack presented in their previous paper [4]. Just as be-
fore this attack tried to extract the private key by using a
spy process that would continuously execute branches. In
this improved attack, Acıiçmez, Koç and Seifert increased
the number of branches executed by the spy process, topt,
to account for another Branch Traget Buffers (BTB) pro-
vided by a architecture. With the original attack, when-
ever a branch was evicted it could be temporally stored in
other BTB, which could have thrown off the spy process’s
goal of determining when the crpyto process executed a
branch. With topt, the attacker could now be sure that
all of the BTBs only contained spy branches so there were
no branches temporally stored anywhere else. Now when-
ever the crypto process took a branch it would evict a spy
branch. When the spy process ran it would hit a mispredic-
tion and evict some other spy branch to make room for this
spy branch, then when the spy process reached that spy
branch it would hit another misprediction causing other
evictions and mispredictions. By the time the spy process
reached the end of that round of executions it would have
suffered a timing penalty of a ripple of mispredictions. This
reippling timing penalty would give a better indication of
when a branch was taken in the crypto process. Figure
3 is from [5] and shows the results of the improved trace
driven attack. With topt, the results of this branch attack
was able to improve to recovering 508 out of 512 bits of the
private key in one measurement.

VIII. Conclusion

In this paper I have shown that because RSA is a secure
algorithm, attackers can not directly break it. Instead at-
tackers try to recover information that would help in ex-
tracting the private key. Through the years the methods
used to get information has evovled. First we saw that
timing attacks could lead to extracting the private key,
but were limited to smart cards. Later on it was shown
that RSA could be attacked over a network, but required
a lot of measurements to recover the private key. In order
to find a way to reduce number of measurements needed,
attacks moved away from directly using timing. Newer at-
tacks came out that took advantage of information that
could be determined from architecture components that
were used to help processor performance. Data left behind
in a cache system, resulted in a trail of information that

could lead to determining half the number of bits in a pri-
vate key. Attacks on a branch predictor unit also emerged
that were similar to the attacks on caches. Both branch
attacks that I showed here, used the BTB to track when
a branch was taken during a process involving RSA. By
tracking the branches taken, an attacker could determine
the private key. These were the five kinds of attacks that
I presented in this paper, which showed how the power of
side-channel attacks grew over time.

References

[1] P. C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,” 1996, pp. 104–113,
Springer-Verlag.

[2] D. Brumley and D. Boneh, “Remote Timing Attacks are Prac-
tical,” in Proceedings of the 12th USENIX Security Symposium,
2003, pp. 1–14.

[3] C. Percival, “Cache Missing for Fun and Profit,” in Proceedings
of BSDCan 2005, 2005.

[4] O. Acıiçmez, Ç. K. Koç, and J-P Seifert, “Predicting Secret Keys
via Branch Prediction,” in Cryptology CT-RSA 2007, The Cryp-
tographers Track at the RSA Conference 2007. 2006, pp. 225–242,
Springer-Verlag.

[5] O. Acıiçmez, Ç. K. Koç, and J-P Seifert, “On the Power of
Simple Branch Predication Analysis,” in 2007 ACM Symposium
on Information, Computer and Communications Security (ASI-
ACCS07. 2007, pp. 312–320, ACM Press.

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems,” Commu-
nications of the ACM, vol. 21, pp. 120–126, 1978.


