
CS 290G: SPECIAL TOPICS IN SECURITY 1

Diffie Hellman Key Exchange
Rupa Ganjewar

Abstract— Diffie–Hellman key exchange is a cryp-
tographic protocol that allows two parties that have
no prior knowledge of each other to jointly establish
a shared secret key over an insecure communications
channel. This key can then be used to encrypt subse-
quent communications using a symmetric key cipher.
The initial implementation of the protocol used the
multiplicative group of integers modulo p, where p is
prime and g is primitive root modp. Both parties ar-
rive at the same value gab and gba both equal to mod p,
and use this value to encrypt and decrypt data. Only
a, b and mod p are kept secret (private key). All the
other values viz., p, g, ga mod p, and gb mod p are sent in
the clear (public key). An efficient algorithm to solve
the discrete logarithm problem would make it easy
to compute a or b and solve the Diffie–Hellman prob-
lem, making this cryptosystem insecure. The Diffie–
Hellman protocol can be strengthened by using el-
liptic curve cryptography, which makes the discrete
logarithm problem almost impossible to solve. Ad-
vantages of ECC include its small key size and strong
security, for e.g., a 160-bit key in ECC is considered
to be as secure as 1024-bit key in RSA. When using
Elliptic Curve Diffie–Hellman, it is practically impos-
sible to find the private key from the public key. The
Diffie–Hellman key exchange is vulnerable to a man-
in-the-middle attack, where an opponent can intercept
and decrypt secured communication by subverting the
keys being exchanged. We describe a few solutions
to preventing man-in-the-middle attacks by modify-
ing the Elliptic Curve Diffie–Hellman protocol.

I. Introduction

Cryptography is the science of information secu-
rity. Cryptography is conventionally referred to the
process of converting ordinary information (plain-
text) into unintelligible gibberish (i.e., ciphertext).
Decryption is the reverse, in other words, moving
from the unintelligible ciphertext back to plaintext.
Consider Alice is interested in sending a private mes-
sage (plaintext) to Bob after encryption (ciphertext).
A cryptosystem consists of a finite set of possible
plaintexts, a finite set of possible ciphertexts, a finite
set of possible keys, an encryption rule for encrypt-
ing plaintext into ciphertext and a decryption rule for
decrypting ciphertext back to plaintext. The general
idea behind any cryptosystem is that Alice and Bob
must share a sector key which is used to encrypt a
message, and without which the plaintext cannot be

Author is with the Department of Electrical and Com-
puter Engineering, University of California, Santa Barbara,
CA 93106, Email: rupa@gadewar.com
Manuscript submitted on June 9, 2010.

recovered.
Private-key Cryptosystems are such that there is

a way for Alice and Bob to secretly share a key k
prior to the transmission of plaintext and they can
use encryption and decryption rules defined by their
secret value of k. One approach to sharing keys is
the key agreement protocol whereby Alice and Bob
jointly establish the secret key by using values they
have sent to each other over a public channel. On
the other hand, Public-key Cryptosystems are such
that Bob keeps his key (and his decryption rule) to
himself, whereas the corresponding encryption rule is
publicly known. Therefore, Alice can send encrypted
messages without any prior sharing of keys, and Bob
will be the only person able to decrypt the message
sent to him.
The Diffie–Hellman protocol is a public-key cryp-

tosystem developed in 1976 and published in a
ground-breaking paper [1]. Diffie-Hellman is not an
encryption mechanism to encrypt data. Instead, it
is a method to securely exchange the keys that en-
crypt data. Diffie-Hellman accomplishes this secure
exchange by creating a “shared secret” (sometimes
called a “key encryption key”) between two devices.
The shared secret then encrypts the symmetric key
(or “data encryption key” i.e. DES, Triple DES,
CAST, IDEA, Blowfish, etc.) for secure transmit-
tal [2]. The Diffie–Hellman Key Exchange’s security
depends on the difficulty of solving the discrete log-
arithm problem. Computing the discrete logarithm
of a number modulo is difficult since it takes roughly
the same amount of time as factoring the product of
two primes, which is the basis for RSA algorithm.
Therefore, the Diffie–Hellman protocol is roughly as
secure as RSA.
Section II of this paper introduces the Diffie–

Hellman concept, Section III describes the security
of Diffie-Hellman, and applications of Diffie-Hellman,
Section III man-in-middle attack on Diffie–Hellman.
Section IV describes a solution to the man-in-middle
attack. Application of Elliptic Curves is described in
Section V with some concepts to prevent man-in-the-
middle attacks.

II. Diffie–Hellman Concept

The Diffie–Hellman protocol is based on the dis-
crete logarithm problem (DLP). The protocol re-



CS 290G: SPECIAL TOPICS IN SECURITY 2

quires two large numbers p and g, where, p and g
are both publicly available numbers. Parameter p is
a prime number with at least 512 bits and parame-
ter g (called a generator) is an integer less than p,
with the property: for every number n between 1
and p-1 inclusive, there is a power k of g such that
n = gk mod p.
Suppose Alice and Bob want to agree on a shared

secret key using the Diffie–Hellman key agreement
protocol, they will generate shared key as follows:
first, Alice generates a random private value a and
Bob generates a random private value b. Both
a and b are drawn from the same set of inte-
gers. Then they derive their public values using
parameters p and g and their private values. Al-
ice’s public value is x = ga mod p and Bob’s pub-
lic value is y = gb mod p. They then exchange
public values x and y. Finally, Alice computes
ka = ya mod p, and Bob computes kb = xb mod p.
Since ka = kb = k, Alice and Bob now have a
shared secret key k [3]. Figure 1 depicts a simpli-
fied schematic of the Diffie–Hellman key exchange.

Figure 1: Diffie Hellman Protocol

A. Diffie–Hellman Key Exchange Algorithm

Let p be a large prime and assume that α is a
primitive element of Zp, p and α are publicly known
[4].
1. Alice choose a (0 ≤ a ≤ −2)at random.
2. Alice computes x = ga mod p and sends it to Bob.
3. Bob chooses b (0 ≤ b ≤ −2)at random.
4. Bob computes y = gb mod p and sends it to Alice.
5. Alice computes (gb)a mod p
whereas Bob computes (ga)b mod p.
In other words, both Alice and Bob compute the
same key
gab mod p.
Figure 2 depicts an example of the Diffie–Hellman

key exchange. If p = 17014118346046923173168730371
5884105727, then it would take roughly 1.14824×1021

steps to solve, and each step requires many calcula-
tions. Even using Google′s computers which are esti-
mated to perform 300 trillion calculations per second,
it would take roughly 5 years to solve.

Figure 2: Example of Diffie Hellman Key Exchange

B. Security of Diffie–Hellman

If eavesdropper, Mallory, learns integers p, g, x, y
but not the discrete logarithm a of x and b of y to
the base g. She wants to determine the secret key
k = gab mod p from p, g, x, y. This is called Diffie-
Hellman problem. She can compute discrete loga-
rithms mod p, and try to solve the Diffie-Hellman
problem. She determines the discrete logarithm b of
y to the base g and computes the key k = xb This
is the only known method for breaking the Diffie-
Hellman protocol. Until now, no one has succeeded
in breaking Diffie-Hellman problem. It is an impor-
tant open problem of public-key cryptography to find
such a proof. As long as the Diffie-Hellman problem
is difficult to solve, no eavesdropper can determine
the secret key from publicly known information [5].

C. Applications of Diffie–Hellman in Network Pro-

tocols

Diffie-Hellman is currently used in many network
protocols, such as:
• Secure Sockets Layer (SSL)/Transport Layer Secu-
rity (TLS).
• Secure Shell (SSH).
• Internet Protocol Security (IPSec).
• Public Key Infrastructure (PKI).
• In all major VPN gateway’s today (PKI).

III. Man-in-the-middle Attack on

Diffie–Hellman

The Diffie–Hellman key exchange is vulnerable to a
man-in-the-middle attack. Though this system can-
not be broken but it can be bypassed. In this attack,
an adversaryMallory can not only intercept messages
form Alice and Bob but also can send different mes-
sage and stop sending the the original message. The



CS 290G: SPECIAL TOPICS IN SECURITY 3

attack is as follows: an adversary Mallory intercepts
Alice’s public value and sends her own public value
to Bob. When Bob transmits his public value, Mal-
lory substitutes it with her own and sends it to Alice.
Mallory and Alice thus agree on one shared key and
Mallory and Bob agree on another shared key. After
this exchange, Mallory simply decrypts any messages
sent out by Alice or Bob, and then reads and possibly
modifies them before re-encrypting with the appro-
priate key and transmitting them to the other party.
This vulnerability is present because Diffie–Hellman
key exchange does not authenticate the participants.
The man-in-middle attack is shown in Figure 3.

Figure 3: Man-in-the-middle attack against Diffie–Hellman

Imagine now that an adversary Mallory is capa-
ble of not only intercepting messages between Alice
and Bob, but also stopping them and substituting
his own messages instead. Then Mallory can do the
following: pick his own random e ∈ Z∗

p , and compute
gz mod p. Then intercept ga that Alice sends to Bob,
and substitute gz instead. Note that Bob does not
notice any difference (because, after all, both ga and
gz are random elements of Z∗

p ) and dutifully replies

with gb. Mallory intercepts gb, and sends gz to Al-
ice instead. This way, Alice ends up thinking that
she is sharing ka = (gz)a mod p with Bob, while Bob
ends up thinking that he is sharing kb = (gz)b mod p
with Alice. Note that, in fact, they are both shar-
ing a key with Mallory, who can compute ka and kb.
Now whenever Bob tries to send something to Alice,
he will presumably encrypt (and/or authenticate) it
using kb . Mallory can intercept it, decrypt with kb,
re-encrypt with ka, and send it on to Alice. So Bob
and Alice will never realize they are not sharing a
key with each other. This is known as “man-in-the-
middle” attack, and is just one of the reasons why
key agreement is a difficult problem. In fact, satisfac-
tory formal definitions for key agreement took about
a decade and a half longer to appear than definitions
for encryption and signature.

IV. Solution to Man-in-Middle attack

A. Authentication

Possible solutions include the use of digital signa-
tures and other protocol variants. The authenticated
Diffie–Hellman key agreement protocol, or Station-
to-Station (STS) protocol, was developed by Diffie,
van Oorschot, and Wiener in 1992 [6] to defeat the
man-in-the-middle attack on the Diffie–Hellman key
agreement protocol. The immunity is achieved by al-
lowing the two parties to authenticate themselves to
each other by the use of digital signatures and public-
key certificates. The basic idea is as follows: prior to
execution of the protocol, the two parties Alice and
Bob each obtain a public/private key pair and a cer-
tificate for the public key. During the protocol, Alice
computes a signature on certain messages, covering
the public value ga mod p. Bob proceeds in a simi-
lar way. Even though Carol is still able to intercept
messages between Alice and Bob, she cannot forge
signatures without Alice’s private key and Bob’s pri-
vate key. Hence, the enhanced protocol defeats the
man-in-the-middle attack.

B. Digital Signature Algorithm

To provide authentication to the Diffie–Hellman
key exchange Arazi used DSA (Digital Signature Al-
gorithm) [7]. Digital signatures are used to sign elec-
tronic documents. They are similar to handwritten
signatures. If Alice signs a document with her hand-
written signature, then everybody who sees the docu-
ment and also knows Alice’s signature can verify that
Alice has in fact signed document. For example, the
signature can be used in a trial as proof that Alice
has knowledge of the document and has agreed to its
contents. In principle, digital signatures work as fol-
lows: suppose that Alice wants to sign the document
m. She uses a secret key d and computes the signa-
ture s. Using corresponding public key e, Bob can
verify that is in fact the signature of m [5].

The DSA signature scheme consists of DSA =
(DSA.key, DSA.gen, DSA.ver). DSA.key generates
a private-public key pair for the party. That is, a
public key consists of a prime p, an order q which
is also a prime, a generator g, and y. A private
key is x such that y = gx mod p. DSA.gen makes
a signature (r, s) for a message m with the pri-
vate key x such that r = ((gk mod p) mod q) and
s = (k−1(H(m) + xr)) mod p, where k is a ran-
dom value and H is a hash function. DSA.ver
verifies a message-signature pair (m, r, s) with the
public key y and returns 1 if valid or 0 otherwise.
That is, the algorithm checks for 0 < r,s < q and



CS 290G: SPECIAL TOPICS IN SECURITY 4

((gH(m)S−1yrs
−1) mod p) mod q = r[7].

C. Message authentication

In this approach, the receiver should be sure about
the senders identity. One approach to provide au-
thentication is with the help of digital signature. The
idea is similar to signing a document. Digital Signa-
ture provides the remaining three security services;
Authentication, Integrity and Non-repudiation. Dig-
ital Signature There are two alternatives for Digital
Signature: signing the entire document, signing the
digest. In the first case, the entire document is en-
crypted using private key of the sender and at the
receiving end it is decrypted using the public key of
the sender. For a large message this approach is very
inefficient. In the second case a miniature version of
the message, known as digest, is encrypted using the
private key of the digest created using the received
message is compared the decrypted digest. If two are
identical , it is assumed that the sender is authen-
ticated .This is somewhat similar to error detection
using parity bit.

D. User authentication

User authentication is different from message au-
thentication since the identity of the sender is verified
for each and every message for message authentica-
tion. On the other hand, user authentication is per-
formed only once for the duration of system access.

V. Application of Elliptic Curve

Cryptography

Elliptic Curve Cryptography (ECC) is a public key
cryptography, where each user or device participat-
ing in the communication has a private and a public
key. Only the particular user knows the private key
whereas the public key is distributed to all users tak-
ing part in the communication. The mathematical
operations of ECC is defined over the elliptic curve
y2 = x3 + ax + b, where 4a3 + 27b2 6= 0. Each value
of a and b gives a different elliptic curve. The public
key is a point in the curve and the private key is a
random number. The public key is obtained by mul-
tiplying the private key with the generator point G in
the curve. The security of ECC depends on the diffi-
culty of the elliptic curve discrete logarithm problem.
If P and Q are two points on an elliptic curve such
that kP = Q, where k is a scalar and sufficiently
large, it is computationally infeasible to obtain k if
k is the discrete logarithm of Q to the base P . Note
that this is computationally infeasible even if P and
Q are known. The main operation involved in ECC is
point multiplication of scalar k with any point P on

the curve to obtain another point Q on the curve. A
schematic for the ECDH protocol is shown in Figure
4.

Figure 4: Elliptic Curve Diffie–Hellman Protocol

Elliptic curve Diffie–Hellman protocol (ECDH) is
one of the key exchange protocols used to establish
a shared key between two parties. ECDH protocol
is based on the additive elliptic curve group. ECDH
protocol begins by selecting the underlying field Fq

or F2k , the curve E with parameters a, b and the base
point P . The order of the base point P is equal to k.
The standards often suggest that we select an elliptic
curve with prime order and therefore any element of
the group would be selected and their order will be
the prime number k. At the end of the protocol, the
communicating parties end up with the same value
K which is a point on the curve. The conventional
ECDH protocol is susceptible to man-in-the-middle
attack. Three approaches to modify the ECDH pro-
tocol for preventing man-in-the-middle attacks are
summarized below.

A. ECC with no public point

Conventional protocols for elliptic curve cryptosys-
tems such as ECDH assume that the curve E, the
field Fq and a point P on the curve are all public.
A protocol proposed by Kaabneh and Al-Bdour [8]
assumes that only the curve E and Fq are public,
keeping the base point P secret, which makes it diffi-
cult to launch a man-in-the middle attack. Key steps
in the protocol include:
• Two parties select prime number n and two param-
eters a and b satisfying the elliptic curve equations
and also such that n = pq.
• p and q are chosen to be prime numbers. Integer e
is selected such that d ≡ e−1 mod (p− 1)(q − 1).
• Party A selects a first random number Xa in Fq, a
second random number Ra in Fq, and a point Pa on
the elliptic curve.
• Party B selects its own first random number Xb in
Fq, second random number Rb in Fq, and a point Pb



CS 290G: SPECIAL TOPICS IN SECURITY 5

on the elliptic curve.

The agreement between A and B has the following
scheme:

• A computes point Ga = XaPa and sends it to B,
while B computes Gb = XbPb and sends it to A.
• A computes point Sa = RaGb and B computes
point Sb = RbGa.
• A receives Sb from B and B receives Sa from A
and each arrive at K = e(Sa + Sb).
• Result K is cross-checked against result O from a
previous interaction and the scheme terminates with
a failure if K = O.

Multiplication by e gives the protocol public key
characteristics so that the public key will be K for
both parties and the private key will be d(Sa + Sb).
The protocol provides known-key security since each
run of the protocol produces a unique session key.
Although an adversary may have learned some other
session key, they can’t compute K, because they
don’t know the private keys d. The protocol also pos-
sesses forward secrecy since the two parties generate
and share a unique key for each session. A two pass
key agreement used in this protocol requires that the
imposer has to intercept two sets of values, viz., Ga,
Sa and Gb, Sb. Also, since the value e is secret, it is
not possible for the imposer to calculate key K.

B. Authenticated key agreement with pre-shared pass-

word

One of the disadvantages of the station-to-station
(STS) protocol as described in Section IV is that the
extension to larger systems requires larger storage for
certificates and more bandwidth for verification of
the signature as the number of users increases. ECC
based authentication and key agreement protocol us-
ing Diffie–Hellman mechanism can provide identity
authentication, key validation and user anonymity.
A named certificate authority is needed in these sys-
tems and the user is required to process certificates.
The SAKA (Simple Authenticated Key Agreement)
algorithm uses a pre-shared secret password to ensure
identity authentication, however, it is still susceptible
to man-in-the-middle attack if the password is com-
promised. Aifen et al., combined the advantages of
the two protocols to develop the Elliptic Curve Au-
thenticated Key Agreement (ECAKA) to foil man-
in-the-middle attacks [9]. The protocol uses the fol-
lowing steps:

B.1 Key establishment

• A chooses a random integer dA ∈ [1, n − 1], com-
putes QA = (dA + t)P , and transmits QA to B.

• B chooses a random integer dB ∈ [1, n − 1], com-
putes QB = (dB + t)P , and transmits QB to A.
• A computes X = QB + (−t)P = dBP and KA =
dAX = dAdBP .
• B computes X = QA + (−t)P = dAP and KB =
dBX = dAdBP .

B.2 Key validation

• A computes tKA = tdAdBP , and transmits to B.
• B checks whether tKA = tKB holds or not. If
it does, B believes that she and A have obtained
the same session key KA = KB. Therefore B can
confirm the validity of QA. B thereby validates KB

and transmits tdAP to A.
• A checks tdAP and if it is correct, A believes that
B has obtained the correct QA. A also believes that
she has obtained the correct QB since only B knows t
besides A. A therefore believes that KA is validated.

B.3 Security Analysis

Only by knowing t, it may be possible to gen-
erate positive validation messages, however, an im-
poser does not know the value of t. In the Diffie–
Hellman protocol, an imposer can alter the public
values such as ga mod n or gb mod n with her own
values. In the ECAKA protocol, when the imposer
receives QA = (dA + t)P , she cannot guess dA and
t. She also must generate dIP = (d∗A + t)P and send
it to B; B will obtain a wrong value d∗AdBP , which
is impossible for the imposer to know. The imposer
cannot therefore share a session key with B orA. The
ECAKA protocol has excellent forward secrecy since
it is difficult to compute discrete logarithm to deci-
pher old session key. The ECAKA protocol can suc-
cessfully repel replay attacks and man-in-the-middle
attacks.

C. Deniable authentication protocol

Han et al., have developed a deniable authenti-
cation protocol that enables a receiver to identify
the source of a received message and prevent a third
party from identifying the source of the message [10].
Their proposed protocol uses bilinear pairings over
elliptic curves together with the Diffie–Hellman key
exchange protocol. The proposed scheme can also be
used for wireless communications. For a three party
setup that includes the sender, S, the receiver, R, and
an imposer, I, the deniable authentication protocol
is comprised of the following:

C.1 Specifications

• Find a sufficiently large prime p such that p ≡

2 mod 3 and p = 6q−1, where q is also a large prime.



CS 290G: SPECIAL TOPICS IN SECURITY 6

• Consider two elliptic curves E/Fp and E/Fp2 de-
fined by y2 ≡ x3 + 1 mod p.
• Choose a secure cryptographic hash function and
construct a bilinear function e : G1 ×G1 → G2.
• Select a generator element P ∈ G1, therefore,
e(P, P ) is the generator element of G2.
• The certificate authority CEA chooses Q ∈ G1 as
one public parameter satisfying Q = fP ∈ G1.
• Conventionally available public key digital signa-
ture scheme is used. The receiver obtains the public
key of the sender from the CEA and verifies its va-
lidity.

C.2 Protocol Implementation

• S randomly chooses a number x and computesX =
xP ∈ G1 and X ′ = EKPrv

(X) and sends X ′ to R.
Note that KPrv is the private key of S.
• R chooses a number y ∈ Z∗

q randomly and sends
Y = yP to S.
• R decrypts X ′ and gets X = EkPub

(X ′), and then
computes k = e(Q,X)y ∈ G2.
• S computes k′ = e(Y,Q)x ∈ G2.
• S sends a message m with a hash message authen-
tication code hmac′ = H(k′,m) ∈ G to R.
• R computes hmac′ = H(k,m) ∈ G1. If hmac′ =
hmac, then R accepts m, otherwise R can reject it.
This protocol can also be used in the absence of a
trusted center by the sender and receiver deciding Q
and kPub values through another identification proto-
col. The proposed protocol has the deniable property

since it is possible to design a simulator such that
the hash code is indistinguishable to a third party
thereby protecting the identity of the sender. Due to
the difficulty of the Bilinear Diffie–Hellman problem,
an imposer cannot compute k = e(P, P )fxy ∈ G2

even if she obtains X and Y by interception. This
allows sender authentication by using the hash func-
tion. For perpetrating a man-in-the-middle attack,
the imposer must produce key X ′, which is a hard
problem even if the imposer knows X and P . The
deniable authentication protocol therefore can suc-
cessfully withstand man-in-the-middle attacks.

VI. Areas for Further Work

A. Group Key Generation

Tree based group key agreement protocols such as
Diffie–Hellman involve unnecessary delays because
members with low-performance computer systems
can join group key computation. These delays are
caused by the computations needed to balance a key
tree after membership changes. An alternate ap-
proach to group key generation that can reduce de-
lays is needed. A dynamic prioritizing mechanism of

filtering low performance members in group key gen-
eration can be used reduce the computational over-
head.

B. Hardness of Discrete Logarithm Problems

The Diffie–Hellman key exchange scheme is secure
provided the Diffie-Hellman problem is hard. If one
can solve the discrete logarithm problem, then it is
clear that one can solve the Diffie-Hellman problem,
hence the latter problem is no harder than the former.
It is believed that the two problems are equivalent,
and in fact this equivalence has been established for
some special cases. One method to determine the
hardness of solving the Diffie–Hellman instances is
to pose a special case of the Diffie-Hellman problem
called the static Diffie–Hellman problem for an arbi-
trary group element. Algorithms must be developed
to solve the static problem to determine the weakness
of the discrete logarithm problem to attacks devised
to find the private key.

VII. Conclusions

The Diffie-Hellman key agreement was invented in
1976 by Whitfield Diffie and Martin Hellman and was
the first practical method for establishing a shared
secret over an unprotected communications channel.
Their work was influenced by Ralph Merkle’s work
on public key distribution. The Diffie-Hellman key
exchange’s security depends on the difficulty of solv-
ing the discrete logarithm problem. Computing the
discrete logarithm of a number modulo is difficult
since it takes roughly the same amount of time as
factoring the product of two primes. The security of
the Diffie-Hellman key exchange can be further bol-
stered by utilizing elliptic curve cryptography, which
makes the discrete logarithm problem almost impos-
sible to solve. The Diffie-Hellman key exchange is,
however, vulnerable to the man-in-the-middle attack.
Use of digital signatures can prevent such attacks.
We have discussed a few solutions to prevent man-
in-the-middle attacks on elliptic curve Diffie-Hellman
protocol, including ECC with no public point, au-
thenticated key agreement with pre-shared password
and deniable authentication protocol.

References

[1] W. Diffie and M. E. Hellman, “New directions in cryptog-
raphy,” IEEE Trans. Inf. Theory, vol. IT-22, pp. 644–654,
1976.

[2] “Diffie-Hellman Key Exchange - A Non-Mathematicians
Explanation,” http://www.netip.com/articles/keith/
diffie-helman.htm, May 2010.

[3] “What is diffie-hellman?” http://www.rsa.com/rsalabs/
node.asp?id=2248, May 2010.



CS 290G: SPECIAL TOPICS IN SECURITY 7

[4] M. Saeki, “Elliptic curve cryptosystems,” Master’s thesis,
McGill University, Montreal, QC, Canada, 1997.

[5] J. A. Buchmann, Introduction to Cryptography , Springer,
2004.

[6] M. J. W. W. Diffie, P. C. van Oorschot, “Authentication
and authenticated key exchanges,” Designs, Codes and
Cryptography, vol. 2, pp. 107–125, 1992.

[7] A. Arazi, “Integrating a key cryptosystem into the digital
signature standard,” Electron. Lett., vol. 29, no. 11, pp.
966–967, 1993.

[8] K. Kaabneh and H. Al-Bdour, “Key exchange protocol in
elliptic curve cryptography with no public point,” Am. J.
App. Sci., vol. 2, no. 8, pp. 1232–1235, 2005.

[9] Y. Y. S. Aifen, L. C. K. Hui and K. P. Chow, “Elliptic curve
cryptography based authenticated key agreement with pre-
shared password,” J. Electron., vol. 22, no. 3, pp. 268–272,
2005.

[10] W. L. S. Han and E. Chang, “Deniable authentica-
tion protocol resisting man-in-the-middle attack,” World
Academy of Science, Eng. Technol., vol. 1, no. 3, pp. 161–
164, 2005.


