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1 INTRODUCTION

In this project we have implemented the Elliptic
Curve and Edwards Curve in Java. We compared
the execution times of Elliptic Curve and Edwards
Curve in Affine Coordinate System, Projective Co-
ordinate System and in Inverted Edwards Coordi-
nate System for different sizes of the curve equa-
tions. We also implemented a Random Number
Generator using Edwards curve, where in we ran-
domly find a point on the curve or on a unit circle.

2 ELLIPTIC CURVE

An Elliptic Curve (EC) is a smooth, non singular,
projective algebraic curve which can be defined by
an equation of the form: y? = x* + ax + b where a
and b are real numbers.

Elliptic curve point multiplication is the operation
of successively adding a point along an elliptic
curve to itself repeatedly. It is used in elliptic
curve cryptography (ECC) as a means of producing

a trapdoor function. Given the above curve,
we define point multiplication as the repeated
addition of a point along that curve, denoted as
d[P] =P+ P+ P+...+ P for some scalar (integer) d
and a point P = (x, y) that lies on the curve.

In this project, we implement the point multiplica-
tion using Binary Multiplication algorithm on vari-
ous Standard Curves of different sizes, making use
of Affine and Projective Coordinate System.

2.1 ELLIPTIC CURVE POINT MULTIPLICATION

In point multiplication a point P on the elliptic
curve is multiplied with a scalar d using elliptic
curve equation to obtain another point Q on the
same elliptic curvei.e. d[P] = Q

Point multiplication is achieved by two basic
Elliptic curve operations :

1. Point addition, adding two points P and Q to
obtain another pointRi.e, R=P+Q
2. Point doubling, adding a point P to itself to



obtain another point Qi.e., Q =2P

2.2 AFFINE AND PROJECTIVE POINT
NOTATIONS

Points can be represented in various formats. In
this assignment , the point is represented in the :
1.Affine Point Format (X, Y) = (x, y)

2.Projective Point Format (Jacobian) (X,Y) =
(x/zz,y/z3) =(x,),2)

2.3 BINARY METHOD

The binary method is a simple method for point
multiplication. The integer d is represented as

d= dn_lz”‘l + dn_22”‘2 + ..+ d +dy

Where d; €{0,1}, n=0,1,2... n—1

Thatis d =X dj2f , where d; € {0, 1}

This method scans the bits of d either from left-
to-right or right-to-left. The binary method for the
computation of d[P] on the canonical form of d
where d;€{0,1, -1} can be defined for a point P and
a scalar value of d as follows:

Algorithm:Binary Method
Input: Binary representation of d and point P
d= (dn—l---dldo) ’ di € {0) 1) _1}

Output: d[P]

1. Q=P

2. for i=n-21to 0 do
3.1 Q =2Q (Doubling)

3.2 if d;=1then

3.3 Q=Q+P (Addition)
4, i=i—-1

5. return Q

This algorithm has been implemented for both
affine point and the projective point notation.

2.4 ADDITION

Point addition is defined as taking two points along
a curve E and computing where a line through
them interesects the curve. We use the negative of
the intersection point as the result of addition.

The operation is denoted by P+ Q = R, or (xp, yp) +

(xq,¥q) = (xr,y;).This can algebraically be calu-
lated by:
1= Ya" Y
Xq = Xp

xr:AZ—a—xp—xq
yr:/l(xp_xr)—)/p

Where a is the multiplication factor of x? in the el-
liptic field.

2.5 DOUBLING

Point doubling is similar to point addition, except
we take the tangent of a isngle point and find the
intersection with the tangent line.
2
_ 3xp+2axy+ b
2yp
x,=A-a- 2xp
yr= A(xp —Xr)— Yp

Note that only A has changed with respect to the
point addition problem.

3 EDWARDS CURVE

Edwards proposed a new normal form for elliptic
curves and gave an addition law that is remarkably
symmetric in the x and y coordinates. The equa-
tion of an Edwards curve over a field K is given by



xz+y2:1+dxzy2

for some scalar d € K {0,1}. Also the following
form with parameters c and d is called an Edwards
curve:

¥+ 2 =1 +dx*y?)

where ¢, d € K with cd(1 - c¢*d) #0.

4 [MPLEMENTATION

4.1 ADDITION LAaw

It is possible to add points on an elliptic curve,
and obtain another point that belongs to the curve.
When two points (x1,y;) and (x2,)2) on an Ed-
wards curve are added, the result is another point
which has coordinates:

X1Y2 + X2 )1 Yiy2 —X1X2
L+dx1xy1y2 1—dx1x2)1)2

(x1,y1) + (x2,)2) =

The neutral element of this addition is (0, 1). The
inverse of any point (x1, y1) is (—x1, y1). The point
(0, -1) has order 2: this means that the sum of this
point to itself gives the "zero element” that is the
neutral element of the group law, i.e. 2(0, -1) = (0,
1).

If d is not a square in K, then there are no excep-
tional points: the denominators 1+ dx; xpy; y» and
1 - dx1x2)1y» are always nonzero. Therefore, the
Edwards addition law is complete when d is not a
square in K. This means that the formulas work for
all pairs of input points on the edward curve with
no exceptions for doubling, no exception for the
neutral element, no exception for negatives, etc.[1]
In other words, it is defined for all pairs of input
points on the Edwards curve over K and the result
gives the sum of the input points.

If d is a square in K, then the same operation can
have exceptional points, i.e. there can be pairs
(x1, 1) and (xp, y») where 1+ dx1x2y1y2 =0o0r1—
dx1x2y1y2 =0.

One of the attractive feature of the Edwards Addi-
tion law is that it is strongly unified i.e. it can also
be used to double a point, simplifying protection
against side-channel attack. The addition formula
above is faster than other unified formulas and has
the strong property of completeness [1]

4.2 EXAMPLE OF ADDITION LAW :

Let’s consider the elliptic curve in the Edwards
form with d =2

x2+y2: 1+2x2y2

and the point P; = (0, 1) on it. It is possible to prove
that the sum of P; with the neutral element (0,1)
gives again P;. Indeed, using the formula given
above, the coordinates of the point given by this
sum are:

X1Y2+ Y1X2

3 = = 1
1+dx1x2y1)2

_ Nny2—xx2

3 l—dxleylyz

Edwards curves have attracted great interest for
several reasons. When curve parameters are cho-
sen properly, the addition formulas use only 10 M +
1S. The formulas are strongly uniifiAed, i.e., work
without change for doublings; even better, they are
complete, i.e., work without change for all inputs.

4.3 INVERTED EDWARDS COORDINATES

The Edwards curve equation can be written using
projective coordinates as:

X2+Y) 722 =74 +dX?Y?



An inverted Edwards point (X; : Y7 : Z1) corre-
sponds to the affine point (Z,/X;,Z;/Y;) on the
Edwards curve.lt is easy to convert from standard
Edwards coordinates (Xj : Y7 : Z7) to inverted Ed-
wards coordinates: simply compute (Y1 2; : X173 :
X, Y1) with three multiplications. The same com-
putation also performs the opposite conversion
from inverted Edwards coordinates to standard Ed-
wards coordinates. The addition formulas for in-
verted Edwards coordinates use only 9M + 1S. The
formulas are not complete but still are strongly uni-
fied. Inserting Z;/ X; for x; and Z;/Y; for y; in the
Edwards addition law (assuming X;Y;Z; # 0) we

_ [ XN+ X1Y0)Z1 2 X1 X-1Y)Z,1 2,
- (XleYl Y,+dZ2 72 modp, XiXo V1 Yo-dZEZ2 modp)
(4.1)
Z3 Z3)
X3 Y3

where
X3 = (X1 X2 - V1 V2) (X1 Xo V1 Yo + d 2} Z5)

Y3 = (Xo V1 + X1 Vo) (X1 Xo V1 Yo — d 22 Z2)
Z3=(X1Xo-N1Y)Xoh + X3Y2) 21 2,

This shows the idea behind inverted Edwards coor-
dinates, namely that in this representation only Z3
needs to be multiplied with Z; Z,, which saves 1M
in total.

5 RANDOM NUMBER GENERATOR

A Random Number Generator can be imple-
mented using the Edwards Curve.

5.1 RNG 1 : EDWARDS CURVE ONTO UNIT
CIRCLE

A point (x, y) on the Edwards curve Ed projects to
the point (¢, v) in the same quadrant on the unit
circle as (u, v) = (ax, ay), where

1
VX2t )2

a =

5.2 RNG 2 : UNIT CIRCLE ONTO EDWARDS
CURVE

A point (u, v) on the unit circle projects back to the
point (x, y) in the same quadrant on the Edwards
curve Ed as (x, y) = (Bu, fv), where,

V2

ﬁ:
V1+V1-4dui?

5.3 RNG 3 : EDWARDS CURVE ONTO
EDWARDS CURVE

A point (xp, yp) on the Edwards curve Ed, projects
to the point (x1,y;) in the same quadrant on the
Edwards curve Ed; as (x1,y1) = (yxp,yX1), where

V2

\/xg +y§ + \/(xg +y§)2 —4d1x(2)y§

’y:

6 RESULTS AND CONCLUSION

From the figure 6.1 the resulting times are to be ex-
pected. Based on our results we find that elliptic
affine takes the longest of all the three. Edwards
affine improves on time because there is a smaller
amount of additions. Elliptic Projective improves
on time because there are no required divisions.
Edwards Inverted is the fastest because there are
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Figure 6.1: Comparison of Elliptical and Edwards Curve

no division and there is a smaller amount of multi-
plications.

We also ran times for random number gener-
ator and found that Unite cirle onto Edwards
Curve takes the shortest amount of time, and Ed-
wards Curve onto Edwards Curve take the longest
amount of time.
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