
1

A Survey on Group Signatures and Revocation
Methods

Joseph Malcolm & Ryan Pakbaz

Abstract— A group signature is a primitive that allows a
member of a group to sign a message on behalf of the entire
group. Group signature schemes can be used in any applica-
tion where the membership status of a user is important, but
their identity is not, such as in keycard locks. Such schemes
require active membership management in order to add and
remove members from a given group, but current member-
ship revocation systems either scale poorly with group size
or place constraints on the revocation process that make
them infeasible for practical use. In this paper, we explore
established methods for implementing group signatures and
a selection of revocation system for group signatures as well
as current research which extends and enhances these meth-
ods.

I. Introduction

In today’s digital world, the importance of secure infor-
mation exchange becomes more important and necessary
every day. The concept of group signatures aims to offer
a solution to this growing problem. Group signatures have
a wide variety of applications ranging from verifying user
access rights via keycards to providing a secure environ-
ment for anonymous payment schemes and voting proto-
cols. Group signatures allow users to anonymously sign on
the behalf of a group while still allowing user signatures to
be traced back to individuals in the case of misuse.

A member of a group can sign a message on behalf of the
entire group. Only valid members of the group can sign the
message, and any non-member attempting a group signa-
ture will result in an invalid signature. This means that
a group signature scheme needs some means of detecting
whether or not a message was signed by a valid group mem-
ber. [1]

The process of signing a message on behalf of the group
is anonymous, and this is an important trait of group sig-
natures. A member signs a message on behalf of the group,
but the identity of the user who signed said message is not
publicly announced. Any normal member of the group can
only verify that the message was signed by a valid member
of the group. This does not mean that there is no user
identity associated with the message, but instead that the
user identity is encrypted for the sake of identifying the
validity of that user’s membership status.

Such groups needs some method of adding new mem-
bers as well as revoking the membership status of mem-
bers in order to dynamically manage the membership of
the group. These group administration tasks are handled
by the group manager, which has an elevated privilege level

Joseph Malcolm and Ryan Pakbaz are with the De-
partment of Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara, CA 93106. E-mail:
{joseph malcolm,rpakbaz}@umail.ucsb.edu

over the other members of the group. The group manager
is the only member of the group capable of revoking the
anonymity of a signature in the case of a dispute or in a
situation where a particular member has abused somehow
abused their membership status. This is why the identity
of the user is still stored in the signature, albeit in an en-
crypted fashion.

When a user’s membership is revoked, there needs to be a
mechanism to indicate that what was once a valid member
is no longer valid. The problem here is that by nature, this
will require some form of log-keeping in order to change
the permissions of the group so that the revoked user is
no longer able to sign messages. In some schemes, this is
reflected in the signatures themselves storing a list of re-
voked users. In others, the group public key itself somehow
stores a list of revoked users. There are also cases where
this is reflected in updating a public key and pushing that
update to every user in the group whenever a revocation
occurs, which can result in a large amount of computations
performed across the group as a whole per each revocation.
As a result, the general problem with revocation methods
lies in the fact that all revoked users need to be remem-
bered somehow and signatures need to be checked against
this set of revoked users, which results in a tradeoff between
space complexity and time complexity in signing, verifying,
and revoking.

In the following section, we examine a selection of four
papers which offer novel solutions for increasing the effi-
ciency and security of group signatures. Another common
point of interest we will examine are the different methods
the authors use for revoking group members which becomes
a difficult problem to manage as group size grows to less
manageable sizes.

II. A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme

In reference [2], we are introduced to a method devel-
oped to create group signatures that are coalition-resistant
under the strong RSA assumption which implies that the
RSA problem is difficult even when an attacker is able to
chose a public exponent. Under this assumption, even the
entire group working together cannot generate a valid sig-
nature that the group manager cannot link. This work
also improves upon previous join functions by increasing
efficiency by an order of magnitude, and it is also statisti-
cally zero-knowledge with respect to the group members
secrets whereas normally, the join function requires the
group member to expose the product of their secret a prime
of special form, and a random prime.



2

The authors also propose a simple modification that can
allow their work to be applied towards an escrow scheme.
They suggest a simple change to the “sign” and “verify”
functions by creating a protocol between a verifier that is
derived from the “sign” function.

To keep track of revoked members and to prevent and/or
track unauthorized signings, the authors utilize a trivial
approach where members signatures can be compared to
records in a membership table. This table grows linearly
with the number of members in the group and can become
difficult to manage over a long period of time.

III. Revocation and Tracing Schemes for
Stateless Receivers

Reference [3] implements a number of improvements and
enhancements over prior work. This includes a frame-
work for algorithms called “Subset-Cover” which provides
a seamless integration between the revocation and tracing
functions such that the revocation algorithm does not need
to be changed. This mechanism consists of the following
three parts; (1) The initiation scheme where users are as-
signed their secret key, (2) the broadcast algorithm where
a message is broadcast which contains all revoked users,
and (3) a decryption algorithm that all non-revoked users
can use to decrypt messages.

The authors present two incarnations of the “Subset-
Cover” method, each with its own trade-offs.

Method Msg. Len. Storage Time

Complete Subtree rlogN
r logN O(loglogN)

Subset Difference 2r − 1 1
2 log

2N O(logN)

TABLE I

Performance comparison of Complete Subtree and Subset

Difference for “Subset-Cover” Method

Depending on the number of users, N , and the message
length, r, the appropriate method can be chosen to max-
imise resources and processing time.

In the complete subtree method as illustrated in fig. 1,
all users are assigned a leaf in a binary tree and all revoked
users (illustrated in black) are part of their own subtree.
The subset difference method aims to reduce partition size
of the tree by increasing the number of subsets of non-
revoked members into up to 2r − 1 subsets which reduces
message length by a factor of logN . By using trees to
represent current and revoked members, additional sets of
users can be easily revoked by marking their parent nodes.

IV. Efficient Revocation in Group Signatures

This particular revocation method is built on top of
a Camenish-Stadler group signature scheme [4]. The
Camenish-Stadler group signature scheme uses ElGamal
in order to encrypt its signatures. When a user signs a
message in a group, that user’s identity is encrypted using
ElGamal with respect to the group manager’s public key
(h, R). As a result of this, the group’s manager can deter-
mine the identity of the user who had sent a given message

Fig. 1. An example of the complete subtree method in [3]

simply by decrypting the ciphertext sent by said user by
using the group manager’s private key.

They update this particular group signature scheme by
modifying the mechanism used to verify whether the mes-
sage was sent by a valid member of the group. In its orig-
inal form, the Camenish/Stadler group signature scheme
uses a zero-knowledge proof to prove the validity of a sig-
nature. The ciphertext signature provides two values (d,
z), which are both generated using the value r, which is a
private knowledge among all members of the group. The
values (d, z) can be used for checking signature validity by
allowing the recipient to calculate (d, z) using their known
r value and then comparing the (d, z) value generated by
this calculation against the values received through the sig-
nature. If the two sets of (d, z) match, then the signature
has been proven to be valid, but if they do not match, then
the signature is not a valid signature from a member of the
group.

The zero-knowledge proof mechanism is modified to al-
low it to not only check the validity of the signature, but to
also check against a list of revoked users in order to iden-
tify whether the signature was sent by an individual on
the list of revoked users. This is done by including extra
values in the ciphertext corresponding to users that have
been revoked from the group. For each revoked user, there
is a witness value t, which is calculated using the following
formula.

ti = (z/zi)
r

In this formula, z is the identity of the user sending the
message, and zi is the identity of a revoked user. This
formula will either return one if the identity of the user
signing a message matches that of a revoked user or it is
nonzero otherwise. Since there are a number of t values
equal to the number of revoked users, that means that a
user whose signature has no t entries equal to one is in
theory an non-revoked user. The recipient of a signature



3

will be able to calculate the t values associated with the
message and check them against those included in the sig-
nature. Then, if the t values from the calculated and sent
sets match and none of the t entries are equal to one, then
that means the message was not sent from a revoked user.
If, however, this is not true, then the signature did not
come from a valid non-revoked user.

This method of revocation has the distinct advantage of
not requiring any changes in the group public key when a
user is revoked. This is advantageous because not only are
there no public key changes that need to be propagated
to every user in the group, but also none of the signatures
made in prior to the revocation are affected in any way.
This means that past signatures are not compromised or
otherwise invalidated by the process or revocation. Un-
fortunately, this comes at the cost of giving every public
signature a space complexity of O(r), where r refers to the
number of users revoked from the group [5]. In general, this
implementation is only truly useful in groups that do not
expect to have many revocations since the cost of signing
scales poorly with the number of users revoked.

V. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous

Credentials

This particular revocation method relies on the use of
a dynamic accumulator. For the purposes of this applica-
tion, they defined a dynamic accumulator as a function or
family of functions that provides efficient generation, effi-
cient evaluation, quasi-commutativity, witnesses, security,
efficient deletion, and efficient provability. The following
properties are particularly important for use in revocation.

• Efficient evaluation, so that the result of adding an el-
ement to the accumulator is efficient enough for practical
use.
• Quasi-commutativity, so that a set of values added to
the accumulator will produce the same result, regardless of
what order said values are added.
• Security, so that values added to an accumulator can-
not feasibly be recovered by an adversary without explicit
knowledge of a private value.
• Efficient deletion, so that entries can be removed as well
as just added to the accumulator, thus allowing for dynamic
management.
• Efficient provability, so that the presence (or lack thereof)
of a secret value can be determined.

The specific accumulator used in [6] is based on a Baric
and Pfitzmann accumulator, but with some modifications.
First, the domain of values that can be accumulated by the
accumulator must consist solely of prime numbers. This is
necessary since the revocation method relies on being able
to exactly identify each element that has been added into
the accumulator, and using only primes means that every
value that is accumulated can easily be checked or removed
with an inverse operation. Second, as alluded to previously,
elements can be not only added to the accumulator but

deleted from it as well. Third, the acts of deleting users
and updating witnesses have a reduced time complexity.
Finally, since there needs to be a way of checking whether
a message signer is or is not a revoked user while maintain-
ing anonymity, there is also a zero-knowledge proof added
in order to obtain membership knowledge.

The accumulator in this case is based on RSA. Each el-
ement that is added to the accumulator is added through
modular exponentiation, and each element that is removed
is removed through the inverse of the modular exponenti-
ation. For example, adding and removing elements in the
accumulator is performed using the following equations.

vnew = (vold)xmod(n)

In the above equation for adding to the accumulator, vold
refers to the accumulator prior to adding the value x, vnew
refers to the accumulator after x has been added, and x
is the value to be added. For the purposes of revocation,
the value x is a prime number used to identify a particular
member of the group, so adding that ID to the accumulator
means that particular user has had their group membership
revoked. The modulus value n is the product of p and q,
which are both prime numbers. The equation for remov-
ing from the accumulator shown below uses the same basic
variable as those used in the addition operation, but this
particular equation makes use of p and q, and is why the
selection for p and q is important.

vnew = (vold)x
−1mod((p−1)∗(q−1))mod(n)

Dynamic accumulators as tools for revocation have some
very nice properties, such as the fact that signing and ver-
ifying messages has a time complexity of O(1). This is
because the accumulator itself is only every modified or
extensively manipulated during the actual revocation pro-
cess. Unfortunately, this does come at the cost of needing
to constantly track all revocations made throughout the
group. When a revocation occurs, every user must update
their membership by adding the revoked user to their accu-
mulator. This cost is at its worst when a new user is added
to the group, since that user will have to accumulate every
single revocation prior to their initiation into the group. As
a result, revocation operations have at worst an O(r) time
complexity, where r refers to the number of users whose
memberships have been revoked [5]. In general, this is a
greedy revocation method, since it makes normal operation
quick to execute, but makes the revocation itself expensive
due to the logging that all group members must perform.

VI. Conclusion

All current revocation implementations scale poorly in a
two common cases, either as group sizes grows or as the
number of revoked users grows. For example, [4]s imple-
mentation scales poorly as the number of revoked users



4

grows because every signature must append the list of re-
voked users onto it in the form of additional witnesses.
The dynamic accumulator approach in [6] prevents the sig-
natures themselves from growing in size, but does so at the
cost of requiring every user to update their membership
after every revocation, showing that space complexity on
the signature can be decreased, but in this case with the
tradeoff of having an increased time complexity associated
with the act of revocation. Each of the papers reviewed
in this survey offer promising developments, however there
still seem to be no solutions that are feasible for use in large
groups with large numbers of revoked users.

References

[1] David Chaum and Eugne Heyst, “Group signatures,” in Advances
in Cryptology EUROCRYPT 91, DonaldW. Davies, Ed., vol.
547 of Lecture Notes in Computer Science, pp. 257–265. Springer
Berlin Heidelberg, 1991.

[2] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik,
“A practical and provably secure coalition-resistant group signa-
ture scheme,” in Advances in Cryptology CRYPTO 2000, Mihir
Bellare, Ed., vol. 1880 of Lecture Notes in Computer Science, pp.
255–270. Springer Berlin Heidelberg, 2000.

[3] Dalit Naor, Moni Naor, and Jeff Lotspiech, “Revocation and
tracing schemes for stateless receivers,” in Advances in Cryptology
CRYPTO 2001, Joe Kilian, Ed., vol. 2139 of Lecture Notes in
Computer Science, pp. 41–62. Springer Berlin Heidelberg, 2001.

[4] Emmanuel Bresson and Jacques Stern, “Efficient revocation in
group signatures,” in Public Key Cryptography. Springer, 2001,
pp. 190–206.

[5] Benot Libert, Thomas Peters, and Moti Yung, “Group signa-
tures with almost-for-free revocation,” in Advances in Cryptol-
ogy CRYPTO 2012, Reihaneh Safavi-Naini and Ran Canetti,
Eds., vol. 7417 of Lecture Notes in Computer Science, pp. 571–
589. Springer Berlin Heidelberg, 2012.

[6] Jan Camenisch and Anna Lysyanskaya, “Dynamic accumulators
and application to efficient revocation of anonymous credentials,”
in Advances in Cryptology CRYPTO 2002, Moti Yung, Ed., vol.
2442 of Lecture Notes in Computer Science, pp. 61–76. Springer
Berlin Heidelberg, 2002.

VII. Appendix

A. Basic Functions of Group Signatures

Most group signature schemes, at their most basic, have
the following functions in common. The papers discussed
in this survey attempt to alter these functions in such a
way that they retain this defined functionality while also
improving upon them.

SETUP: An algorithm for generating the initial

group public key Y.

JOIN: A protocol between the group manager and a

user that results in the user becoming a new

group member

SIGN: A protocol between a group member and a

user whereby a group signature on a user

supplied message is computed by the group member

VERIFY: An algorithm for establishing the

validity of a group signature given a group

public key and a signed message

OPEN: An algorithm that given a signed message

and a group secret key determines the identity

of the signer

B. Zero-Knowledge Proofs

Zero-knowledge proofs, which are sometimes also re-
ferred to as signatures of knowledge, are a signature mech-
anism that proves whether or not the sender of a message
knows a secret value without revealing said secret value
[4]. These are commonly used in group signature schemes
due to the fact that they can verify the validity of a signed
message without revealing the identity of the sender, thus
allowing for the anonymous message signing that charac-
terizes group signatures. They can also be useful as a tool
used for revocation purposes, as will be demonstrated in
[4] and [6].


