
CS290G APPLIED CRYPTOGRAPHY PROJECT REPORT 1

Implementing Elliptic Curve Integrated Encryption
Scheme on Android Platforms

Liang Xia

Abstract—Elliptic curve cryptography (ECC) is one of the
strongest cryptography in terms of security level. A 160-
bit ECC key is roughly equivalent to a 1024-bit RSA key
(NIST).

Elliptic Curve Integrated Encryption Scheme is a hybrid
encrytion scheme that works like static Diffie-Hellman fol-
lowed by symmetric encryption.

Bouncy Castle is a provider for the Java/C# Cryp-
tography Extension and Java Cryptography Architecture.
Spongy Castle is the Android version for Bouncy Castle.

In this paper, we show an implementation of Elliptic
Curve Integrated Encryption Scheme (ECIES) using Spongy
Castle on Android platforms. The implementation includes
elliptic curve key generation, message encryption and de-
cryption.

We run our application on three platforms. The first plat-
form is Android virtual device simulating Samsung Nexus
S. The second is Samsung Nexus S having an ARM Cortex-
A8 CPU which runs at 1GHz with 512MB RAM. The third
platform is Android Mini TV Dual-Core A9 Processor which
runs at 1GHz with 1GB RAM.

I. ECIES

ECC is based on the operation of a chosen elliptic curve
and a point P on it. We use Weierstrass form as our elliptic
curve, and it contains parameters a, b. The curve is over
prime field p and has order n. A point P on the curve is
chosen as base point.

The scheme ECIES is composed of three algorithms: key
generation, encryption and decryption.

A. Key Generation

For key generation, we need to choose a shared secret d
as a private key. Then, a public key Q, which is a point
on the curve, is generated using Q = [d]P. Therefore, the
key generator returns a key pair (Q, d) to the following
encryption algorithm and decryption algorithm.

Assume Alice wants to send Bob a message. Bob has a
public key Q. Alice and Bob both know the private key d.

B. ECIES Encryption

ECIES encryption has the following steps to encrypt a
message.
• Alice generates a random number k ∈ [1, p].
• Alice calculates U = [k]P.
• Alice calculates T = [k]Q.
• Alice uses a key derivation function (KDF) to compute
two keys k1 and k2 from T. Since T is a 192 bit key, a hash
function is needed to hash the key into 256 bit. Then Alice

Authors are with the Department of Computer Science, Uni-
versity of California, Santa Barbara, CA 93106. E-mail:
liangxia@cs.ucsb.edu

can choose the first half of the 256-bit hashed key as k1
and second half as k2.
• Alice then uses 128-bit AES encryption algorithm to en-
crypt her message with key k1, and obtain cipher text c.
• Alice then chooses HMAC-SHA256 to calculate a message
authentication code (MAC) r with k2.
• Alice sends the pair (U, c, r) as an encrypted message e
to Bob.

C. ECIES Decryption

At Bob’s side, ECIES decryption is shown in the follow-
ing steps.
• Bob parses encrypted message e into (U, c, r).
• Bob has the secret private key d, so he can computes T
= [d]U.
• Like what Alice has done with the T, Bob uses the same
key derivation function to obtain k1, and k2.
• Bob needs to make sure that the message c he receives is
authentic, so he computes MAC using k2 and gets a result.
He compares the result with r that he receives from Alice.
If they are equal, then process to the next step; otherwise,
the message is invalid and discarded.
• Bob uses the 128-bit AES decryption algorithm to de-
crypt c. He obtains the original message m.

If any of the checks fails: reject the message as forged.

II. Bouncy Castle & Spongy Castle

Bouncy Castle (BC) is a set of easy-to-use cryptography
APIs. It is implemented in both Java and C#. It is a
provider for the Java Cryptography Extension and the Java
Cryptography Architecture. It also contains a lightweight
cryptography API.

The Android platform unfortunately ships with a cut-
down version of Bouncy Castle - as well as being crippled,
it also makes installing an updated version of the libraries
difficult due to classloader conflicts. [1]

Spongy Castle contains some small changes to the stock
Bouncy Castle in order to make it work on Android.

III. Implementation

This ECIES implementation uses JAVA SE 6 JDK 1.6
and Spongy Castle package. The development environment
is Eclipse SDK V4.2.2.

Spongy Castle artifacts are published on Maven Central.
The following libraries needs to be downloaded and be set
in java build path.
• sc-light-jdk15on (jar) - Core lightweight API
• scprov-jdk15on (jar) - JCE provider (requires sc-light-

jdk15on)



CS290G APPLIED CRYPTOGRAPHY PROJECT REPORT 2

• scpkix-jdk15on (jar) - PKIX, CMS, EAC, TSP, PKCS,
OCSP, CMP, and CRMF APIs (requires scprov-jdk15on)

Java BigInteger library is very useful in calculating big
numbers of arbitrary length. Our private key is BigInteger
type, and public key, which is point Q, is composed of two
BigInteger variables.

Below is my java class structure.

A. public class ECIES Engine

We define class ECIES Engine as our ECIES en-
gine. We choose NIST 192-bit curve. Please refer to
ECIES Engine.java for more details.

B. public class ECIESDemoActivity

We define class ECIESDemoActivity to build an appli-
cation on top of ECIES MyEngine class. It is an Android
activity class as user GUI. Please refer to ECIESDemoAc-
tivity.java for details.

IV. Compilation

This section tells you how to compile, run and test our
program.

If you only want to install the program, then un-
zip the source code and install bin/ECIES Demo.apk on
your Android device. Or download binary file from
http://www.cs.ucsb.edu/˜liangxia/ECIES Demo.apk and
install it.

The following steps show how to build the program in
Eclipse.
• Make sure that you have JAVA SE 6 JDK 1.6 installed
on your computer. The operating system is Windows 7
Professional. The developing environment is Eclipse SDK.
•Make sure Android 4.2.2 API Level 17 is installed on your
computer.
• Create a new Android project in Eclipse.
• Unzip the source code ECIES Demo.zip and import them
into this Android project.
• Add Spongy Castle library to the project. Go to project
properties and find java build path. Add the three Spongy
Castle APIs mentioned in the above section to the project.
• Connect your Android device (for example, Samsung
Nexus S) to your computer via a USB cable. Make sure
the debugging mode on Android device is on.
• Build or refresh the project, and run it as an Android
application.
• You can see from the Eclipse output window the log of
running this program. You will be able to see the program
running on the Samsung Nexus S.

V. Evaluation

This demo runs on three devices. The first device is An-
droid virtual device simulating Nexus S on Eclipse. Since it
is a virtual device, it is also the slowest device. The second
device is a physical Samsung Nexus S. It runs at 1GHz and
has 512 MB memory. The third device is Android Mini TV
Stick. It is based on ARM Cortex A9 Processor at 1GHz
and 1GB memory. The following table shows the timing

information for encryption and decryption on all three de-
vices.

Table 1: ECIES Encryption and Decryption Time on
Different Devices.

Device Enc (ms) Dec (ms)

Android Virtual Device 4536 1670
Samsung Nexus S 566 225
Android Mini TV Stick 337 181

VI. Conclusion

My project is an implementation of ECIES algorithms on
Android devices. Fortunately, with Java BigInteger library
and Spongy Castle Android Java Cryptography APIs, the
implementation goes very smoothly. The only thing that
needs to take care is the two schemes: encryption and de-
cryption. The 128-bit AES algorithm shows a secure sym-
metric encryption.

Our original implementation of AES can only deal with
a message that is a multiple of 16 characters. With the Ci-
pher Block Chaining (CBC) technique, we can encrypt ar-
bitrary long messages, such as the message the demo shows.

For future work, we need to take care of side channel at-
tacks. For example, when calculating point multiplication,
an aggressive attacker could leverage the timing informa-
tion to launch timing attacks. Encryption process could
also be attacked by some malicious process which fills cache
beforehand and computes cache usage on Android device
to do cache timing attack. Point multiplication is also vul-
nerable to the simple power analysis or differential power
analysis when the device is obtained by a malicious person.

References

[1] Spongy Castle, http://rtyley.github.io/spongycastle/ March
2013.


