
D-Type Flip Flop Entropy Conditioning

Sam Green
CS293G

June 15, 2017

1 Introduction

A common method of realizing a true random number generator (TRNG) for
cryptographic applications is to sample an oscillator, or clock, exhibiting an
unstable center frequency by an oscillator typically exhibiting a relatively stable
center frequency. In the context of random number generation, the unstable
oscillator is the source of entropy and will be referred to as clkrand; the stable
oscillator will be referred to as clkref .

-4.0σ -3.0σ -2.0σ -1.0σ 0.0σ 1.0σ 2.0σ 3.0σ 4.0σ
Deviation from clkµ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
r[
cl
k

]

PDF of Normally Distributed Clock Period

Figure 1: Normal period distribution

Initially, let us assume that the periods composing clkrand will be normally
distributed, see Fig. 1. When clkrand is normally distributed, with equal length
high (1) and low (0) phases of each period, knowledge of its clock period length
is sufficient for determining how to generate entropy from it; that is knowledge
of clkrand’s period allows us to calculate how often to sample from it. There are

1



various means of generating entropy from an unstable clock. A common method
is to sample clkrand at a sampling rate much lower than the center frequency
of clkrand. At any given time an oscillator can be assumed to be either high
(1) or low (0), that is, ignore transition phase of clock; if the oscillator can be
sampled at values outside of the 0/1 range, e.g. sampled values are continuous
in the range [0,1], then we can normalize and round to fit the assumed range.
Let x ∼ clkrand ∈ {0, 1} denote the sampled state of the unstable oscillator.

When using the random sampling technique described above, the high and
low phases of clkrand must sum to equal values in order for there to be no bias in
the sampled numbers. As a first-order example, Fig. 2 shows three (unstable)
clock periods, where the high and low half-periods pi are equal. When using
the random sampling method, as long as

∑
ploweri /

∑
pupperi = 1, then unbiased

numbers will be produced. Note that the previous summation does not require
that all clock periods have the equal half-periods, as long as the sum of the upper
half periods equals that of the lower. Intuitively, if such an equality exists, then
randomly sampling clkrand (at the proper interval) will result in 0 or 1 with
equal probability.

p1

p1

p2

p2

p3

p3

...

Figure 2: Unstable clock with equal half-periods

From this point forward, period will strictly be used to describe square waves
with equal length high and low phases. Indeed, if a square wave has unequal
length of high and low periods, then the underlying wave is actually composed
of multiple sin waves, i.e. the typical f = 1/T formula does not apply. Of
course any physical instance of the stable oscillator clkref will exhibit drift in
period length, e.g. Fig. 1. As an aside, because frequency drift, even clkref can
be sampled for a source of entropy, as long as each square wave fits our strict
requirement of a period.

Unintuitively, the distribution of periods exhibited by clkrand don’t have
to be normal in order to generate randomness. Suppose clkrand exhibited an
skewed distribution of periods as shown in Fig. 3. As long as the equality
condition

∑
ploweri /

∑
pupperi = 1 holds, then the random sampling method

discussed previously will generate high entropy bits. In fact, any distribution of
periods is adequate as long at the equality condition is met.

We will now turn our attention to the case where the sum of periods gen-
erated by a clock are not guaranteed to satisfy the equality condition. In this
case, we can no longer sample the oscillator and directly use the resulting value.
Instead, there will be 0/1 bias present that must be removed by an entropy
conditioner. This situation can arise in practical TRNG applications where
physical entropy sources are typically biased or gets biased as a result of ag-

2



−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Deviation from clkµ

0.00

0.02

0.04

0.06

0.08

0.10

P
r[
cl
k

]

PDF of Skewed Oscillator Period

Figure 3: Skewed period distribution

ing and environmental effects. Thus, the raw output bits from these entropy
sources will have some level of bias that must be removed. Even without bias, it
is important to have a post-processor for additional security and reliability. The
following section presents a means of achieving a low bias TRNG using minimal
and standard CMOS or FPGA resources.

2 D-Type Flip Flop Entropy Conditioning

As stated in the introduction, a common method of building a TRNG for cryp-
tographic applications is to occasionally sample clkrand with clkref . What
“occasionally” actually means is dependent on the stability and frequency of
clkrand with respect to clkref , but typically it is desirable to allow clkrand to
run � clkref . If clkrand exactly satisfies the equality condition, then it is suf-
ficient to directly use the sampled bits as the output of the TRNG, and it will
have perfect entropy. If clkrand does not satisfy the equality condition, there
will be a 0/1 bias in the sampled distribution. An alternative to directly sam-
pling clkrand is to calculate or measure the mean period of clkrand, µrand, and
then use µrand as the 0/1 reference point. How to accomplish this follows.

Assume the period of clkrand has some fixed distribution and that the un-
derlying low and high periods may or may not satisfy the equality condition.
We can initialize clkrand to high (1), then activate it. clkrand will stay at 1
for some time, then transition to low (0), and finally transition back to 1. The
time between activation and the (moment before) the return to 1 is the length
of the period. In any physical system µrand will have jitter or temporal noise,
therefore, if clkrand were allowed to run freely, clkrand would complete a period

3



every µrand+ε seconds, where ε may be considered i.i.d. (We can argue that the
intrinsic thermal noise in circuit components translates into timing noise that
is where the IID comes from.IC.)

At activation time, we may also reset clkref and use it to measure the time
it took clkrand to cycle. At the end of time µrand, we sample clkrand. If clkrand
is still 0 at time µrand, output random bit is set as 0; if clkrand has transitioned
to 1, then it is set as 1. Whether or not clkrand has transitioned at time µrand
is entirely dependant on ε. For notational convenience, from here on, we will
consider clkrand to be a random variable with ε being implicit.

If the mean period of clkrand is normally distributed, then it would have a
probability density function as shown in Fig. 1. If this is the case, it is sufficient
to sample clkrand every µrand seconds and directly use the sampled values as
the TRNG output.

If µrand is not normally distributed, then sampling at µrand (or any other
time) will lead to a bias toward 0 or 1 depending on the distribution. It is still
cryptographically secure to use these biased numbers, if the bias is known, and
if the bias can be removed via post-processing (aka conditioning or whitening).
There are a number of common techniques used for entropy post-processing:

• von Neumann – consider two biased TRNG bits at a time. If the two bits
are equal, then they are discarded. If the bits equal ”10”, then output 1.
If the bits equal ”01”, then output 0.

• Hash function – The biased bits can be processed through a hash function,
e.g. SHA-3.

• PRNG – The biased bits can initialize (seed) a pseudo-random number
generator (PRNG). The PRNG will then output unbiased bits.

There are other similar methods. The von Neumann whitener removes all
bias, but it discards many bits. The hash function and PRNG techniques will
provide unbiased output, but if an attacker knows the underlying algorithm,
which should be assumed under Kerckhoff’s principle, the overall entropy re-
duces to the biased entropy of the inputs.

We present a new method which utilizes the central limit theorem (CLT).
The CLT states that when independent random variables are added, their sum
tends toward a normal distribution, whether or not the original variables are
normally distributed. Initially, let

Sn :=
X1 + ...+Xn

n
. (1)

The Lindeberg-Lévy CLT states the following: If {X1, X2, ...} is a sequence
of i.i.d. random variables with E[Xi] = µ and Var[Xi] = σ2 < ∞, then as
n approaches infinity, the random variables

√
n(Sn − µ) converges to normal

N(0, σ2):

√
n
(
Sn − µ

)
→ N(0, σ2). (2)

4



By utilizing the CLT, along with readily available hardware resources, we
present an efficient design to remove bias from clkrand. We achieve this by
performing the operations of Eqs. 1 and 2 via statistical properties implicit in
our design. Our entropy conditioner uses a chain of N + 1 D-type Flip Flips
(DFFs). DFFs were chosen because they are a readily available resource in
FPGAs and they are simple to implement in custom silicon. The first N DFFs
will cycle through 0’s and 1’s alternately, and they are clocked by clkrand, as
depicted in Fig. 4. The last DFF is the final sampling register driven by clkref .

D Q

Q

clkrand

0101...

D Q

Q

D Q

Q

...

TRNGout

clkref

D Q

Q

Figure 4: DFF chain driven by ustable clock clkrand and sampled by stable and
accurate clock clkref .

At the beginning of random number generation, we initialize the size-N DFF
chain with all 0’s and reset a timer, using the stable reference clock clkref . We
then place a 1 at the input of the first element of the chain and activate clkrand
and clkref . clkref is used as a reliable counter to sample the output of the DFF
chain at time T = N × µrand.

The first DFF output will transition from 0 to 1 at time clkrand1 = µrand+ε1,
where µrand is measured in the number of cycles of clkref necessary to span
the time µrand. The second DFF will then transition from 0 to 1 at time
clkrand1 + clkrand2 = 2× µrand + ε1 + ε2. The N th DFF will transition at time

N × clkrand +

N∑
i=1

εi. (3)

Because of the feedback shown in Fig. 4, the N th DFF will toggle between
0 and 1 every N th cycle of clkrand. Note that Eq. 3 is similar to Eq. 1, and
therefore Eq. 2 applies; that is, the sampled output of the N DFFs will approach
a normal distribution with a mean of µrand. When clkrand is biased, the DFF
period will not be exactly normal until N approaches infinity. However, even
under practical resource constraints, for example using N = 10, there is still
benefit to this approach and bias is significantly reduced, as will be demonstrated
in the next section.

5



-0.1µs 0.0µs 0.1µs 0.2µs 0.3µs 0.4µs 0.5µs
Distance of clkrand bias from mean

0

50

100

150

200

250

N
u

m
b

er
of

sa
m

p
le

s
at

d
is

ta
n

ce

clkrand bias with Beta(5,1) distribution

Figure 5: Histogram of bias values (ε’s) from 4,000 simulated clkrand periods.
The biases are distributed Beta(6,1) and then centered at 0µs.

0.0µs 5.0µs 10.0µs 15.0µs 20.0µs 25.0µs
Distance of clkrand bias from mean

0

20

40

60

80

100

120

140

160

N
u

m
b

er
of

sa
m

p
le

s
at

d
is

ta
n

ce

clkrand bias with chi-square(6) distribution

Figure 6: Histogram of bias values (ε’s) from 4,000 simulated clkrand periods.
The biases are sampled from chi-square distribution. This clock would result in
biased numbers if sampled directly.

3 Simulation Results

For this simulation, three clkrands were simulated: one with no bias, i.e. nor-
mally distributed, and therefore ideal, one with biases from a Beta(6,1) distri-

6



bution, and one with biases from a chi-square(3) distribution. The histograms
of 4,000 samples from the two biased clocks are given in Figs. 5 and 6.

Directly sampling the biased clkrands would result in a skewed distribution
of 1’s and 0’s. Skew in the 0/1 distribution results in less available entropy.
Entropy is a population descriptor similar to population mean and variance;
in practice, Partial Average Shannon Entropy (ASE) is used for cryptographic
assessment; this metric is similar to using sample statistical metrics. ASE is
formally defined as:

ASE = −1

k

2k−1∑
β=0

P (β) · log2P (β), (4)

where

• ASE is expressed in bit/time-step of the underlying TRNG.

• k is a window size to partition the TRNG output for the ASE calculation.

• β takes on all possible 2k integer values from a k-bit window, i.e. β =
0 . . . 2k − 1.

• P (β) is the generation probability of β.

In other words, the ASE returns average entropy per bit over a sequence of
M bits, parsed into k bit words. In cryptographic applications, the closer the
calculated ASE is to 1, the better the underlying entropy. The mathematical
proof is beyond the scope of this paper, but, given a fixed M , the larger k is,
the better the underlying entropy must be in order to maintain proximity to 1.
Therefore an insightful entropy analysis heuristic is to take a fixed sequence of
M bits from a TRNG and calculate the ASE over increasing values of k.

We used the ASE metric to evaluate our DFF-based entropy conditioner. We
first generated 4,000 random bits from the ideal source, the two biased sources,
and the output of the N = 10 DFF-based entropy conditioned sources. Figs.
7 and 8 compare the raw/biased outputs from the two biased sources to the
ideal source and the DFF-corrected source. It can be observed in Fig. 7 that
the DFF-conditioned output significantly reduces bias and brings the measured
ASE close to the ASE of the ideal source. The chi-square source is already
close to normal, so the bias and, therefore correction, are not as extreme, as can
be seen in Fig. 8. In both cases the DFF-corrected bits have ASE very close
to ideal for each value of k; this shows that even with 10 DFFs, we are able
to significantly improve a TRNG. Also note that conditioning an ideal normal
source with our DFF-based entropy conditioner will have no effect on the output
ASE – that is if ASE equals 1 before conditioning, then ASE will equal 1 after
conditioning – and may therefore be applied in all cases.

7



2 4 6 8 10 12 14

Window size (k)

0.6

0.7

0.8

0.9

1.0

A
S

E

ASEs of biased clkrand vs. ideal clkrand

Bias ∼ Beta(6,1)

DFF-Conditioned Output

Ideal

Figure 7: Results when applying DFF-based entropy conditioner to Beta(6,1)-
biased entropy source. 10 DFFs used for conditioning. Conditioned results
approach ideal (normally distributed) after conditioning.

2 4 6 8 10 12 14

Window size (k)

0.6

0.7

0.8

0.9

1.0

A
S

E

ASEs of biased clkrand vs. ideal clkrand

Bias ∼ Chi-Square(6)

DFF-Conditioned Output

Ideal

Figure 8: Results when applying DFF-based entropy conditioner to chi-
square(3)-biased entropy source. 10 DFFs used for conditioning. Conditioned
results approach ideal (normally distributed) after conditioning.

8


