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WHY R-LWE ?

­Most signature schemes currently in use depend on the 
difficulty of factoring or of the DLP

­ Shor (1994): A quantum computer can efficiently (i.e. in 
polynomial time) deal with both factoring and the DLP

­Grover (1996): Speed-up on quantum computers 
against symmetric ciphers

­We therefore need quantum-resistant algorithms !



WHY R-LWE ?

­ Post-quantum schemes:
•Lattice-based: R-LWE, NTRU, GRH, …
•Multivariate: Rainbow
•Hash-based: Merkle, XMSS, …
•Code-based: Niederreiter, McEliece, …
•Supersingular EC isogeny
•AES with large key sizes



WHY R-LWE ?

­At 128 bit of post-quantum security (source:Wikipedia)
Algorithm Type Public Key Private Key Signature

NTRU Encrypt Lattice 6130 B 6743 B

Streamlined NTRU 
Prime

Lattice 1232 B

Rainbow 124 KB 95 KB

SPHINCS Hash Signature 1 KB 1 KB 41 KB

BLISS-II lattice 2 KB 7 KB 5 KB

New Hope Ring-LWE 2 KB 2 KB

Goppa-based McEliece 1 MB 11.5 KB

Quasi-cyclic MDPC-
based McEliece

8 KB 4384 B

SIDH Isogeny 564 B 48 B

SIDH (compressed keys) Isogeny 330 B 48 B

3072-bit Discrete Log 
(not PQC)

384 B 32 B

256-bit Elliptic Curve 
(not PQC)

32 B 32 B



WHY R-LWE ?

­ R-LWE is efficient and several improvements have 
reduced the key sizes and number of computations 
even further (e.g. Zhang 2015 for the key exchange)

­ The average case complexity of solving the lattice 
problem on which R-LWE is based is related to the 
worst case complexity of the shortest vector problem, 
which is NP-hard (Ajtai 1996, 1998)

­ Pedro covered the key exchange last week; R-LWE can 
also be used for digital signature



R-LWE GLP DIGITAL SIGNATURE

­We follow the GLP scheme by Güneysu T., 
Lyubashevsky V., Pöppelmann T. (2012) 

­As with the key-exchange, we work in the ring ideal 
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where Φ is the cyclotomic polynomial 𝑥+ + 1, 𝑞 is 
a prime number and 𝑛 a power of 2

­We work in the least magnitude representation, i.e. 
ℤ0 = {− 045

6
, … , 045

6
}



R-LWE GLP DIGITAL SIGNATURE

­ “Small” polynomial: infinity norm (i.e. max of the 
coefficients in ℤ) is bounded
­Uniform sampling: the coefficients are all chosen 
uniformly in {−𝑏,… , 𝑏} where 𝑏 ≪ 𝑞
­One can also use discrete Gaussians in	ℤ0+ in which case 
solving the R-LWE problem is as hard as the worst-case 
lattice problem with quantum algorithms (Lyubashevsky
2010)
­ The private key is composed of two polynomials 𝒔𝟏and 
𝒔𝟐 with coefficients in {−1, 0, 1}



R-LWE GLP DIGITAL SIGNATURE

­As with DSA, a hash function is required. The hash 
function maps bit strings to small polynomials

­ It is possible to choose a hash function such that exactly 
𝑘 coefficients are equal to 1 or -1, and the others to 0

­An upper bound 𝛽 on the infinity norm (i.e. max of the 
coefficients) of certain vectors is fixed in advance to be 
equal to 𝛽 = 𝑏 − 𝑘, in order to avoid leaking 
information about the secret key



R-LWE GLP DIGITAL SIGNATURE

­ Example of the 𝑘 = 32, 𝑛 = 512 hash function 
presented in the GLP paper: 
­ H maps 0,1 ∗	to a 160-bit string 𝑟, which is then mapped 
injectively to the set of polynomials of degree 𝑛 − 1 with all 
coefficients equal to 0 except for 32 of them, equal to either 1 
or -1

­ Read 𝑟 5 bits at a time, e.g. 𝑟5𝑟6𝑟H𝑟I𝑟J, and create a 16-digit 
string. If 𝑟5 = 0, put a -1 at index 𝑟6𝑟H𝑟I𝑟J (read as a binary 
between 0 and 15) of the 16-digit string. If 𝑟5 = 1, put a 1 at 
index 𝑟6𝑟H𝑟I𝑟J

­ E.g. if we are reading in 𝑟	(01101), the 16-digit string for those 
5 bits is (0		000		000		000		000		(−1)00)

­ This gives a 5KL
J
∗ 16 = 512 bit string which we read as a poly



R-LWE GLP DIGITAL SIGNATURE –
PUBLIC KEY GENERATION

­𝑞, 𝑛, 𝑏, 𝑘,Φ(𝑋) are known by the signer and the 
verifier

­ The private key consists in two polynomials 𝑠L and 𝑠5
chosen uniformly randomly from −1, 0, 1 + by the 
signer

­ The public key consists in a polynomial 𝑎 chosen in a 
uniformly randomly from 
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and 𝑡 = 𝑎𝑠L + 𝑠5



R-LWE GLP DIGITAL SIGNATURE –
SIGNATURE

1. Two polynomials 𝑦L, 𝑦5are selected by sampling 
uniformly their coefficients from {−𝑏,… , 𝑏}

2. Compute 𝑤 = 𝑎𝑦L + 𝑦5 and compute 𝑐 = 𝐻(𝑤,𝑚)
3. Compute 𝑧L = 𝑠L𝑐 + 𝑦L and 𝑧5 = 𝑠5𝑐 + 𝑦5 (no 

reduction mod 𝑞 necessary in this step given the 
“small coefficients” condition)

4. If 𝑧L Xor 𝑧5 X > 𝛽,  restart at 1.

5. The signature is (𝑐, 𝑧L, 𝑧5)



R-LWE GLP DIGITAL SIGNATURE –
VERIFICATION

1. If 𝑧L Xor 𝑧5 X > 𝛽, reject

2. Compute 𝑤Z = 𝑎𝑧L + 𝑧5 − 𝑡𝑐

3. If 𝑐 = 𝐻 𝑤Z,𝑚 , accept



R-LWE GLP DIGITAL SIGNATURE –
VERIFICATION PROOF

­ Proof:
𝑤′	= 𝑎𝑧L + 𝑧5 − 𝑡𝑐
	= 𝑎 𝑠L𝑐 + 𝑦L + 𝑧5 − 𝑎𝑠L + 𝑠5 𝑐
	= 𝑎𝑦L + 𝑠5𝑐 + 𝑦5 − 𝑠5𝑐
	= 𝑎𝑦L + 𝑦5 = 𝑤

­Note: while a smaller 𝛽 is more secure, it increases 
the likelihood of having to resample the 𝑦\
­ For 𝑘 = 32 the likelihood of ||𝑧\||X ≤ 𝛽 can be 

shown to be equal to 1 − KI
6_`5

6+



R-LWE GLP DIGITAL SIGNATURE

­ R-LWE can be used for quantum-resistant asymmetric 
key encryption/decryption and digital signature with a 
speed comparable to current methods (RSA, ECDSA)
­ The GLP algorithm with 𝑛 = 512, 𝑞 = 8383489, 𝑏 =
25I	has a signature size of ~1KB, a secret key size of 
~200B, and a public key size of ~1.5KB and provides 
a security equivalent to ~100 bits
­ The GLP algorithm can be implemented on embedded 
systems and was tested to be 1.5x faster than RSA



CONCLUSION

­Other algorithms based on R-LWE exist for signature, 
such as BLISS

­Akleylek & al. (2016): ring-TESLA: most secure 
implementation to date, 20% faster than GLP at the 
cost of larger keys / signature, smaller key sizes than 
BLISS but 1.45x slower, although BLISS may be 
vulnerable to timing attacks

­ Relatively new subfield of crypto, expect to see a lot of 
development in the next few years due to the proven 
security of R-LWE !


