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WHY R-LWE ?

Most signature schemes currently in use depend on the
difficulty of factoring or of the DLP

Shor (1994): A quantum computer can efficiently (i.e. in
polynomial time) deal with both factoring and the DLP

Grover (1996): Speed-up on quantum computers
against symmetric ciphers

We therefore need quantum-resistant algorithms !



WHY R-LWE ?

Post-quantum schemes:
Lattice-based: R-LWE, NTRU, GRH, ...
Multivariate: Rainbow
Hash-based: Merkle, XMSS, ...

Code-based: Niederreiter, McEliece, ...

Supersingular EC isogeny
AES with large key sizes



WHY R-LWE ?

At 128 bit of post-quantum security (source:Wikipedia)

Algorithm Type Public Key Private Key Signature
NTRU Encrypt Lattice 6130 8B 6743 B
Sh:eamlmed NTRU Lattice 1232 8
Prime
Rainbow 124 KB 95 KB
SPHINCS Hash Signature 1 KB 1 KB 41 KB
BLISS-II lattice 2 KB 7 KB 5 KB
New Hope Ring-LWE 2 KB 2 KB
Goppa-based McEliece 1 MB 11.5 KB
Quasi-cyclic MDPC-
based McEliece 8 ke 43848
SIDH Isogeny 564 B 48 B
SIDH (compressed keys) | Isogeny 330 B 48 B
307 2-bit Discrete Log
4B 2B
(not PQQC) 38 3
256-bit Elliptic Curve 32B 328

(not PQCQC)



WHY R-LWE ?

R-LWE is efficient and several improvements have
reduced the key sizes and number of computations
even further (e.g. Zhang 2015 for the key exchange)

The average case complexity of solving the lattice
problem on which R-LWE is based is related to the
worst case complexity of the shortest vector problem,
which is NP-hard (Ajtai 1996, 1998)

Pedro covered the key exchange last week; R-LWE can
also be used for digital signature



R-LWE GLP DIGITAL SIGNATURE

We follow the GLP scheme by Gineysu T.,
Lyubashevsky V., Péppelmann T. (201 2)

As with the key-exchange, we work in the ring ideal
Lq|X]
D (X)
a prime number and n a power of 2

where @ is the cyclotomic polynomial x™ 4+ 1, g is

We work in the least magnitude representation, i.e.
Z . q_1 q_1
q 2 ' 2



R-LWE GLP DIGITAL SIGNATURE

“Small” polynomial: infinity norm (i.e. max of the
coefficients in Z) is bounded

Uniform sampling: the coefficients are all chosen
uniformly in {—b, ..., b} where b < q

One can also use discrete Gaussians in ZZ in which case
solving the R-LWE problem is as hard as the worst-case
lattice problem with quantum algorithms (Lyubashevsky

2010)

The private key is composed of two polynomials $;and
S with coefficients in {—1,0, 1}



R-LWE GLP DIGITAL SIGNATURE

As with DSA, a hash function is required. The hash
function maps bit strings to small polynomials

It is possible to choose a hash function such that exactly
k coefficients are equal to 1 or -1, and the others to O

An upper bound [ on the infinity norm (i.e. max of the
coefficients) of certain vectors is fixed in advance to be
equal to f = b — k, in order to avoid leaking
information about the secret key



R-LWE GLP DIGITAL SIGNATURE

Example of the k = 32,n = 512 hash function
presented in the GLP paper:

H maps {0,1}" to a 160-bit string 7, which is then mapped
injectively to the set of polynomials of degree n — 1 with all
coefficients equal to O except for 32 of them, equal to either 1
or -1

Read r 5 bits at a time, e.g. 111,131,475, and create a 16-digit
string. If 7y = 0, put a -1 at index 1,737,7: (read as a binary
between O and 15) of the 16-digit string. If r; = 1, puta 1 at
index 1,137,475

E.g. if we are reading in 7 (01101), the 16-digit string for those

5 bits is (0 000 000 000 000 (—1)00)

This gives a ? * 16 = 512 bit string which we read as a poly



R-LWE GLP DIGITAL SIGNATURE —
PUBLIC KEY GENERATION

q,n, b, k, ®(X) are known by the signer and the
verifier

The private key consists in two polynomials sy and 54
chosen uniformly randomly from {—1, 0, 1}" by the
signer

The public key consists in a polynomial a chosen in a
Lq|X]

P (X)

uniformly randomly from and t = asgy + 54



R-LWE GLP DIGITAL SIGNATURE —
SIGNATURE

Two polynomials y,, y;are selected by sampling
uniformly their coefficients from {—b, ..., b}

Compute w = ay, + y; and compute ¢ = H(w, m)

Compute zy = soC + Yo and z; = s1¢ + Y4 (no
reduction mod g necessary in this step given the
“small coefficients” condition)

If ||ZO||Ooor “Zl”oo > 3, restart at 1.

The signature is (¢, zg, Z1)



R-LWE GLP DIGITAL SIGNATURE —
VERIFICATION

If ||ZO||OOor “le‘oo > B, reject
Compute W' = azy + z; — tc

If c = H(w',m), accept



R-LWE GLP DIGITAL SIGNATURE —
VERIFICATION PROOF

Proof:
!/

w =azy+z; —tc
= a(sgc + yo) + z1 — (g€ + s1)c
= ayo + (5¢€ + y1) — $(C
=ayot+yr =w
Note: while a smaller [ is more secure, it increases
the likelihood of having to resample the y;

For k = 32 the likelihood of ||z;|| < B can be
2

64 <"
shown to be equal to (1 — )
2b+1




R-LWE GLP DIGITAL SIGNATURE

R-LWE can be used for quantum-resistant asymmetric
key encryption/decryption and digital signature with a
speed comparable to current methods (RSA, ECDSA)

The GLP algorithm withn = 512,q = 8383489,b =
2% has a signature size of ~1KB, a secret key size of
~200B, and a public key size of ~1.5KB and provides
a security equivalent to ~100 bits

The GLP algorithm can be implemented on embedded
systems and was tested to be 1.5x faster than RSA



CONCLUSION

Other algorithms based on R-LWE exist for signature,
such as BLISS

Akleylek & al. (2016): ring-TESLA: most secure
implementation to date, 20% faster than GLP at the
cost of larger keys / signature, smaller key sizes than
BLISS but 1.45x slower, although BLISS may be
vulnerable to timing attacks

Relatively new subfield of crypto, expect to see a lot of
development in the next few years due to the proven

security of R-LWE |



