
Analysis of RNS and BDK MonPro Algorithms

Pradeep Shekhar Katta and Shaman Bhat
{pradeepshekharkatta,shamanbhat}@umail.ucsb.edu

Department of Electrical and Computer Engineering
University of California Santa Barbara

June 16 , 2017

Abstract

Residue Number System (RNS) is used in parallelizing operations like addi-
tion, subtraction, multiplication and exact division. We study and investigate
the performance of RNSMonPro and BDKMonPro algorithms which are based
on RNS arithmetic. We first describe the theory behind the algorithms and
identify the key differences. Then we assess the algorithms based on the execu-
tion time. It is expected that BDKMonPro algorithm reduces complexity and
performs better than RNSMonPro.

1 Introduction

There exist many different algorithms that are used to carry out modular multi-
plication on very large numbers. These algorithms exploit Montgomery’s modular
multiplication and redundant radix number systems. Compared to these algorithms,
Residue Number System (RNS) offers parallel and carry free operation which has
gained significance [3]. The RNS decomposes a large integer into a set of smaller in-
tegers. A large computation can be broken down into a series of smaller calculations
that are highly pliable to parallelism. This is useful for implementing Montgomery
Multiplication which is widely used in most cryptographic applications.

In modular arithmetic computation, Montgomery Multiplication is used to per-
form fast modular multiplication. This operation can be performed in RNS domain as
it consists of one addition and two multiplications. This paper analyzes two variants
of RNS algorithms - RNSMonPro and BDKMonPro. RNSMonPro involves conversion
between RNS domain to a weighted radix and back. BDKMonPro on the other hand
is also planted on the classical Montgomery Multiplication with the difference that
it uses two residue number systems. We have implemented and analyzed the afore-
mentioned two variants of RNS. We have tested and compared the execution time
of various modules and the algorithms as a whole. The source code for the above
implementation can be found at https://github.com/pradeepshekhar/RNS_BDK.

1

2 Montgomery Multiplication

Montgomery multiplication was introduced by the American mathematician Peter
Montgomery. It computes the product c = a · b · r−1 (mod n) for two integers a and b
and an arbitrary modulus n. Here, r is chosen to be 2k such that 2k−1 < n, 2k. This
requires that n be odd, which is often the case in cryptography. MonPro comprises
of two multiplications instead of one and we do not explicitly need r−1 but it requires
n′ which is computed using extended Euclidean algorithm (EEA) as follows:

(s, t)← EEA(r, n)⇒ s · r + t · n = 1

where r−1 = s (mod n) and n′ = −t.

function Montgomery(a, b)
input: a, b, n, r, n′

output: u = a · b · r−1 mod n
1: t← a · b
2: m← t · n′ (mod r)
3: u← (t + m · n)/r
4: if u ≥ n then u← u− n
5: return u

3 Residue Number System

RNS allows the speed up of computation by distributing large dynamic range com-
putation over small modular rings [4]. In RNS, large integers are represented using
a set of remainders with respect to a set of relatively prime moduli mi. The sum,
difference and product operations can be performed on the remainders with respect
to corresponding moduli. The Conversion from RNS to weighted radix is directly
based on the chinese remainder theorem (CRT).

3.1 Chinese Remainder Theorem

Given the remainders r1, r2, ..., rk, the RNS representation of a number x using moduli
[mi]

k
i=1, we can compute x using

x =
k∑

i=1

ri · ci · ni (mod n)

where ni = n/mi, n = m1 ·m2 · · ·mk and ci = n−1i (mod mi)
The above theorem uses a summation computation that can be implemented using

the Mixed Radix Conversion (MRC) Algorithm that avoids multi-precision arithmetic
until the last phase.

2

3.1.1 Mixed Radix Conversion

MRC involves computation of the mixed radix representation of a number using it’s
RNS representation. Our implementation of MRC can be summarized as follows:

1. Calculate the inverses cij for 1 ≤ i < j ≤ k, using EEA.

cij = m−1j (mod mi)

where mi’s are the moduli.

2. Given the remainders (r1, r2, ..., rk), form the lower triangular r matrix as given
below. It’s diagonal elements represent the mixed radix coefficients.

• First column, ri1 = ri for i = 1,2,...,k

• Compute jth column using the (j − 1)th column and cij’s

rij = (ri,j−1 − rj−1,j−1) · ci,j−1 (mod mi)

3. The integer x is then determined using the diagonal entries of r matrix as

c = r11 + r22 ·m1 + r33 ·m1 ·m2 + ... + rkk ·m1 ·m2 · · ·mk−1

This is the only step that requires multi-precision arithmetic.

3.2 Classical RNS Montgomery Algorithm

The vector set M = {m1,m2, ..,mk} is chosen such that m =
∏k

i=1mi where mi’s are
relatively prime with n2 < m so that overflow during multiplication can be avoided
within RNS [1].

A denotes the RNS representation of a number a of dimension k where A =
(A1, A2,, Ak) and Ai = a (mod mi). A is computed from a as A = RNS(a)
and conversely a is computed from A as a = CRT (A). Here, CRT uses the MRC
algorithm. Below we show the setup steps involved in our implementation of the
above algorithm.

3.2.1 Setup

1. Given two integers a, b and moduli n, we determine Montgomery parameters r
and n′ using EEA as discussed in Section 2.

2. We find the RNS representations A,B,N,R,N ′ using the RNS function on
a, b, n, r, n′ respectively.

3. Compute R−1 - the vector (R−11 mod m1, R
−1
2 mod m2,, R

−1
k mod mk)

3

3.2.2 RNSMonPro Algorithm

Input: A,B,N,R−1

Output: T : RNS representation of t = a · b · r−1 mod n
1: T ′ ← A ·B

T ← T ′ ·N ′
2: t← CRT(T)
3: q ← t (mod r)
4: Q← RNS(q)
5: T ← (T ′ + Q ·N) ·R−1

Steps 1 and 5 in the above algorithm can be performed in parallel on k processors.
Steps 2 and 4 require conversions between RNS and weighted radix since step 3 is
performed in weighted radix.

3.3 BDK Montgomery Algorithm

The arduous calculations involved in conversion and multi-precision arithmetic can
be averted in BDK algorithm. It uses two residue number systems defined as

M = (m1,m2, ...,mk) where m = m1m2...mk

P = (p1, p2, ..., pk) where p = p1p2...pk

Some conditions that must be satisfied include gcd(m, p) = 1 and gcd(n,m) = 1
and 2n < m < p. The BDK algorithm evaluates t = a · b · m−1 (mod n). Here
r = m = m1m2...mk. It is important to note here that r is not equal to 2k, normally
seen in other variants of Montgomery multiplication. The reason behind this decision
is to circumvent conversion between RNS and weighted radix.

3.3.1 Setup

1. Given c, d and modulus o; C,D,O are calculated in base M ; C,D,O are calcu-
lated in base P .

2. Find O−1 in base M using EEA.

3. Determine −C (mod M).

4. Calculate M−1 - the vector (m−1 (mod p1),m
−1 (mod p2),...,m

−1 (mod pk)).

5. Precompute Mji and Tji, the product terms used in the Step 3 of MRC.

• Mji = m1m2...mj (mod pi) for j = 1, 2...k − 1

• Pji = p1p2...pj (mod mi) for j = 1, 2...k − 1

4

3.3.2 BDKMonPro Algorithm

Input: C,D,O: Basis M
C,D,O,M−1: Basis P

Output: T ,T: Basis M and P
1: S ← (−C ·D) ·O−1
2: S ← BasisConversion(S)
3: T ← (C·D +S· O) M−1
4: T ← BasisConversion(T)

Computation of S and T are performed in RNS bases M and P respectively. Steps 2
and 4 are used to execute the basis conversion function i.e, the MRC algorithm [2]

3.3.3 Basis Conversion

The BDK algorithm requires computation of c · d + s · o ≥ m which cannot be
represented in M . Hence a second residue system P is used such that p > m [4].
So we need conversion between bases. The following steps elucidate basis conversion
from base M to P .

1. Given (S1, S2, ..., Sk), representation of s in M , the MRC representation
(S1,S2,...,Sk) is determined as explained in Section 3.1.1.

2. (S1,S2,...,Sk), representation of s in P is then calculated using

Sj = S1 + S2 ·M1j + S3 ·M2j + · · ·+ Sk ·Mk−1,j

where Mji’s are calculated during setup. k processors execute k− 1 multiplica-
tions and k − 1 additions in parallel to find the k elements of S.

4 Analysis

The RNSMonPro and BDKMonPro algorithms were implemented in C language on
a portable computer with Intel Core i7 2.6 GHz processor running a 64-bit Ubuntu
16 operating system. They were analyzed by calculating the execution time using the
”time.h” library in C. All the values reported were averaged over 10 executions for
consistency. The NextPrime[·] function in Mathematica was used to generate the
moduli.

4.1 Timing Procedure

In RNSMonPro, as steps 1 and 5 are performed in parallel on k processors, the
time taken for execution in each moduli is calculated and averaged to get the actual
execution time. The execution time of steps 2,3 and 4 is added to get the total
execution time of the algorithm.

5

In BDKMonPro, all the steps are performed in parallel on k processors. Hence
the actual execution time is calculated by averaging the total time taken by each
processor.

In both cases, the time taken for setup is not included as it is not part of the
actual algorithm.

4.2 Timing Comparison

For comparing execution times, the following values were used as inputs to the algo-
rithms:

• a = c = 19, b = d = 21, n = 29, k = 5(number of moduli)

As the execution time for an iteration is very low, the algorithms were executed
several times(n=1000000,100000,10000) and execution time per iteration is reported.
From Fig. 1, it can be clearly seen that BDKMonPro is faster than RNSMonPro in
all the cases.

Figure 1: Timing Comparison

Set # a = c b = d n k

1 19 21 29 5
2 26386123 12379231 14527 5
3 2638451216123 871247372 5423687 5

Table 1: Input Sets

6

4.3 Execution time for varying inputs

In this section, we will look at execution time of the algorithms for three different
input sets described in Table. 1. Larger primes were used as moduli for bigger inputs.

Figure 2: Execution times for different input sets

From Fig. 2, we see that the execution time increases as we use larger inputs.

5 Conclusions

We have successfully implemented the RNSMonPro and BDKMonPro algorithms.
Adapting the modifications suggested by J.C. Bajard et al., we observe improvement
in execution time of the BDK algorithm over RNS. BDK reduces the complexity by
parallelizing the inter basis conversions. Increasing the number of iterations does
not affect the execution time per iteration of the algorithms. We also gained a good
understanding of the work-flow of the algorithms and were able to quantify the gain
in performance.

References

[1] J-C Bajard, L-S Didier, and Peter Kornerup. An rns montgomery modular mul-
tiplication algorithm. IEEE Transactions on Computers, 47(7):766–776, 1998.

[2] J-C Bajard, L-S Didier, and Peter Kornerup. Modular multiplication and base
extensions in residue number systems. In Computer Arithmetic, 2001. Proceedings.
15th IEEE Symposium on, pages 59–65. IEEE, 2001.

7

[3] Jean-Claude Bajard, Laurent-Stephane Didier, and Peter Kornerup. Montgomery
modular multiplication in residue arithmetic, 2000.

[4] Jean-Claude Bajard and Thomas Plantard. Rns bases and conversions. In Optical
Science and Technology, the SPIE 49th Annual Meeting, pages 60–69. Interna-
tional Society for Optics and Photonics, 2004.

8

