
A Comparison of El Gamal and Paillier
Cryptosystems

Nicholas Chen
nicholasbchen@umail.ucsb.edu

Department of Computer Science
University of California Santa Barbara

June 2018

Abstract

This paper will examine the concepts behind both the El Gamal and Paillier
style of public key cryptography. I will compare and contrast the size and
complexity of both algorithms. I will focus on Pailliers method of encryption,
in particular, its additive homomorphism and the benefits this style can bring
to practice.

1 El Gamal Encryption

The discrete exponential function is the basis of El Gamal’s cryptosystem:

Exp:Zp−1 → Z∗p , x→gx

There is no efficient algorithm for computing the inverse function, that is comput-
ing x given y = gx. This is called the discrete logarithm assumption. The encryption
scheme is described as such:

Key Generation:
1. Choose a large prime p
2. Choose a random x ∈ Z∗p
3. Pick a generator g ∈ Z∗p
4. Compute y = gx mod p

The public key of this encryption is (p, g, y) and x is kept as the secret key.

1

Encryption:
1. Prepare a message m ∈ Zp
2. Choose a random k that is relatively prime to p− 1
3. a = gk mod p
4. b = yk ·M mod p
5. Send ciphertext c = (a, b)

Decryption:
1. (a, b) = c
2. M(plaintext) = b/ax mod p

The security of this scheme depends on the assumption that it is impossible to
compute gxk from gx and gk, and hence g−xy and M . This is known as the Diffie-
Hellman problem. An efficient algorithm to compute discrete logarithms would solve
this problem but no algorithms exist thus far.

2 Paillier Encryption

Paillier’s public key encryption scheme is based on the Composite Residuosity Class
Problem. We begin with the following definition:

Definition 1. A number z is said to be the n-th residue modulo n2 if there
exists a number y ∈ Z∗n2 such that

z = yn mod n2.

The problem of deciding n-th residuosity, i.e. distinguishing n-th residues from non
n-th residues will be denoted by CR[n]. Deciding n-th residuosity is believed to
be computationally hard and the hypothesis that there exists no polynomial time
distinguisher for n-th residues modulo n2 is referred to as the Decisional Composite
Residuosity Assumption (DCRA).

We then begin to describe the numberic-theory framework underlying this cryp-
tosystem. Let us first denote Carmichael’s function on n as λ(n) = lcm(p−1, q−1) or
just λ for shorthand. Let g be some element of Z∗n2 and denote by Eg the integer-valued
function defined by:

Zn × Z∗n → Z∗n2

(x, y)→ gx · yn mod n2

We denote Bα ⊂ Z∗n2 the set of elements of order nα and by B their disjoint union
for α = 1, ..., λ.

2

Definition 2. Assume that g ∈ B. For w ∈ Z∗n2 , we call n-th residuosity class
of w with respect to g the unique integer x ∈ Zn for which there exists y ∈ Z∗n such
that

Eg(x, y) = w.

We denote the class of w as [[w]]g.

Definition 3. We call Composite Residuosity Class Problem the computational
problem Class[n] defined as follows : given w ∈ Z∗n2 and g ∈ B, compute [[w]]g.

In order to find the computational complexity of this definition, we state the fol-
lowing theorems that are proved in [2].

Theorem 1 . Class[n]⇐ Fact[n].

Theorem 2 . Class[n]⇐ RSA[n, n].

Theorem 3 . Let D-Class[n] be the decisional problem associated to Class[n] i.e.
given w ∈ Z∗n2 , g ∈ B and x ∈ Z∗, decide whether x = [[w]]g or not. Then

CR[n] ≡ D-Class[n]⇐ Class[n]

To conclude the computational hierarchy:

CR[n] ≡ D-Class[n]⇐ Class[n]⇐ RSA[n, n]⇐ Fact[n]

We can then state that there exists no probabilistic polynomial time algorithm
that solves the Composite Residuosity Class Problem, i.e. Class[n] is intractable.
This conjecture is referred to as the Computational Composite Residuosity Assump-
tion (CCRA). The proofs for the definitions, theorems and identities in this section
can be found in Paillier’s paper, Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes. We shall now describe the encryption scheme based on this
problem.

Key Generation:
1. Choose a large n = pq that is the product of two large primes
2. Randomly select a base g ∈ B

The public key of this encryption is (n, g) and the secret key is (p, q).

3

Encryption:
1. Prepare a message m < n
2. Choose a random r < n
3. Ciphertext c = gm · rn mod n2

Decryption:
1. Ciphertext c < n2

2. m(plaintext) = L(cλ mod n2)

L(gλ mod n2)
mod n

Where L(u) = u−1
n

and λ is Carmichael’s function.

This scheme is semantically secure if and only if the Decisional Composite Resid-
uosity Assumption holds. This scheme is one-way if and only if the Computational
Composite Residuosity Assumption holds.

Paillier’s scheme has additive homomorphic properties as the two encryption func-
tions, m→ gmrn mod n2 and m→ gnr+m mod n2 are additively homomorphic on Zn.
This leads to the following identities:

∀m1,m2 ∈ Znandk ∈ N
Dec(Enc(m1)Enc(m2) mod n2) = m1 +m2 mod n

Dec(Enc(m)k mod n2) = km mod n

De(Enc(m1)g
m2 mod n2) = m1 +m2 mod n

Dec(Enc(m1)
m2 mod n2)

Dec(Enc(m2)
m1 mod n2)

}
= m1m2 mod n

3 Comparisons

Both El Gamal and Paillier encryption require the generation of a large element prime
element. For El Gamal, the element p needs to be selected. This is done by choosing
a large number x at random. If the number is even, replace x with x + 1 and apply
the probabilistic test to check whether it is prime or not. If x is not a prime, replace x
with x+2 until it is prime. There is expected to be O(ln(x)) numbers that are tested
until a prime number is found. For Paillier encryption, this process occurs twice for
both p and q to compute n.

El Gamal’s complexity arises from the selection of the random element k that
must be prime relative to p− 1. This can be achieved by choosing a large prime fac-
tor of the form p = 2kq+ 1 where q is a large prime. The same process in choosing p
is used to choose the number q. Then, a random k is generated that is of appropriate
bit length. Apply probabilistic primality testing to z = 2kq + 1 and increment k by
1 until primality is achieved. This process is expected to test O(ln(z)) numbers.

4

Paillier’s encryption complexity stems from the exponentiation of base g. Choos-
ing a small g will expedite computations drastically. Computation of rn or gnr mod n2

can be computed in advance. Computing L(u) for u ∈ Sn during decryption can
occur at very low cost by precomputing n−1 mod 2|n|. The constant parameter
L(gλ mod n2)−1 mod n needs to only be precomputed once.

The tables below compare the security, size, and complexity of these two encryp-
tion schemes.

Schemes Paillier Scheme El Gamal Scheme
One-wayness Class[n] DH[p]
Semantic Sec CR[n] D-DH[p]
Plaintext Size |n| |p|

Ciphertext Size 2|n| 2|p|

Encryption Paillier Scheme El Gamal Scheme
|n|, |p| = 512 5120 1536
|n|, |p| = 768 7680 2304
|n|, |p| = 1024 10240 3072
|n|, |p| = 1536 15360 4680
|n|, |p| = 2048 20480 6144

Decryption Paillier Scheme El Gamal Scheme
|n|, |p| = 512 768 768
|n|, |p| = 768 1152 1152
|n|, |p| = 1024 1536 1536
|n|, |p| = 1536 2304 2304
|n|, |p| = 2048 3072 3072

Observing the tables reveal the similarity between decryption complexity and
ciphertext size. The complexity of Paillier’s encryption is significantly larger than
that of El Gamal’s.

4 Prêt á Voter

The additive homomorphic properties allow this scheme to be useful in voting proto-
cols, threshold cryptosystems, watermarking, secret sharing schemes and more. In the
next sections, we will discuss the application of this cryptosystem to the Prêt á Voter
scheme. The key innovation of the Prêt á Voter scheme is that the vote is encoded
in a random frame of reference or better represented as a randomized candidate list
using a threshold scheme. In this way, the voter’s choice does not need to be encoded
and any communication with an encyrption device is completely avoided. Each ballot
has a right-hand side with a unique ballot number that marks the selection of the
voter. The left-hand side lists the candidates for the reader. The right-hand side is

5

casted when the voter turns in his or her ballot. The value printed at the bottom of
this form is key to its evaluation and is called the ”onion”.

Each form has a unique, random secret seed value ρ drawn from some seed space
S. The candidate permutation, π, is computed using the seed over a publicly agreed
function σ : S → ΠC where C is the set of candidates and ΠC is a permutation over
this set. Each ballot is a tuple with (π, {ρ}PKT) where PKT is the threshold public
key and π is the candidate permutation. The value ρ is kept secret. A receipt ballot
has the form (i, {ρ}PKT) where i is the index value of the cell the voter placed their
vote in.

5 Prêt á Voter with Paillier Encryption

We assume that the public key of the tellers, PKT = (n, g), is certified and publicised
and that there is a publicly agreed function, σ, from the seed space into the set of per-
mutations of the candidates. Each booth device creates a public key pair PKb, SKb

and publishes PKb. The form is given a random serial number ξ. The booth device
is then fed this serial number in which the signing key SKb is applied to generate a
random string η that will be used to derive randomisation and the random seed. The
device then computes π, the candidate order, and the onion value, θ, by encrypting
the seed value, ρ, with the PKT using the randomization ζ.

The seed and randomization are computed from: < ρ, ζ >:= {ξ}SKb .
The candidate order as: π := σ(ρ).
The onion value by: θ := {ρ, ζ}PKT .

The ballot forms will be generated by a set of l clerks in such a way that each
contributes to the cryptographic values from which the candidate list is derived. We
again assume that there is a set of tellers with key shares for a threshold Paillier algo-
rithm with public key PKT : (g, n) and that booths have public keys PKB = (q,m)
in order to distinguish the two. In order to generate w ballots at a given booth, the
j-th clerk generates w sub-onion pairs: θTj,i; θ

B
j,i where

θTj,i := {sj,i, xj,i}PKT = gsj,i · (xj,i)n (mod n2) and
θBj,i := {sj,i, yj,i}PKB = qsj,i · (yj,i)m (mod m2).

The first term is the encryption of the j, i-th seed under the public teller’s key
and the second is the seed for the booth’s public key. The randomisations of x and y
should be independent. The full onions are formed by using the remaining un-audited
rows of pairs, denoted as Ai. The onions for the row i are then computed as:

ΘT
i :=

∏
j∈Ai θ

T
j,i

ΘB
i :=

∏
j∈Ai θ

B
j,i

6

This results in onions for which the seed value is: si =
∑

j∈Ai sj,i and the ran-
domisation by:
xi =

∏
j∈Ai xj,i (mod n2)

yi =
∏

j∈Ai yj,i (mod m2).

The seed values and therefore, the candidate orders, remain encrypted and the
ballots can be distributed in this form to be used in conventional pre-printed form.
We introduce two new processes PL and PT . PT takes a batch of forms and for each
form, looks up the corresponding ΘT

i where i is the index on the form. It re-encyrpts
this and prints it on the right hand side of the form. Once PT is finished, the ballots
are shuffled, and passed to process PL that holds the secret booth key. For a form
carrying the j-th index, PL looks up the appropriate ΘB

j , decrypts this, and prints
out the candidate order on the left hand side of the ballot. The resulting ballots are
then sealed in individual envelopes for later use.

6 Conclusion

In this paper I overviewed the key generation, encryption, and decryption algorithms
for the El Gamal and Paillier cryptosytems. El Gamal’s security stems from the Diffie-
Hellman problem and the underlying discrete logarithm assumption. Paillier’s secu-
rity stems from n-th residuosity’s computational hardness that leads to the Decisional
Composity Residuosity Assumption. We then examined the Composite Residuosity
Class Problem that creates the Computational Composite Residuosity Assumption
that adds extra security to Paillier’s scheme. Comparing the two systems revealed
the many similarities between the two but the difference in complexity when it comes
to encrypting messages. The Prêt á Voter system for voting has many practical ben-
efits and we explored how this style can be employed using Paillier’s system. The
additive homomorphic properiteis of Paillier’s system can prove beneficial in many
other practices and this paper only examines one of these situations.

References

[1] Hans Delfs and Helmut Knebl. Introduction to Cryptography, Principles and Ap-
plications [Second Edition]]. Springer-Verlag, 2007.

[2] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. Springer-Verlag, 1999.

[3] P.Y.A. Ryan, Pret a Voter with Paillier encryption. Mathematical and Computer
Modelling, Volume 48, pp. 1646-1662. Elsevier, 2008.

7

