Tutorial: Random Number Generation

John Lau Henry Yu
johnlau@umail.ucsb.edu henryyu@umail.ucsb.edu
June 2018
1 Abstract

This tutorial will cover the basics of Random Number Generation. This
includes properties of random numbers and pseudo-random numbers, genera-
tion of pseudo-random numbers, physical and computational techniques and
methods for generating random numbers, tests for random numbers, as well as
applications. We will cover computational techniques such as Linear and Mul-
tiplicative Congruential Method, Combined Linear Congruential Generators as
well as Random Number Streams. For tests of uniformity and independence, we
will discuss frequency test, runs test, gap test, poker test, Kolmogorov-Smirnov
test, and Chi-Square test. We will compare True random numbers to that of
pseudo-random numbers. Lastly, we will discuss some of the applications of
Random Numbers.

2 DMotivation

Games — Lottery, Casino

Politics — Allotment

Religion — Divination

Statistics — Sampling, Analysis, Simulations

e Art, Music — Stochastic, Generative Music

Cryptography — Encryption

3 Introduction

Before we dive into random number generators, let us first understand a little
bit about the background of randomness. Random numbers have traditionally
been used for a variety of purposes throughout history, ranging from gambling
dice games, coin flipping to being the foundation of many security protocols and

functions. But is rolling a die, picking a card out of a shuffled deck, or flipping a
coin truly random? In order to be truly random, the die or coin should land on
all possible values equally, and can not have any obvious patterns in a sequence.

With the rise of technology of computers, the means of introducing true
randomness proves to be quite difficult as computer instructions are predictable
in nature. Thus, there becomes a split in random number generation: Pseudo
Random Number Generator (PRNG) and True Random Number Generator
(TRNG). There are also Hybrid Random Number Generators and Quantum
Random Number Generators but we will only focus on Pseudo and True in this
short tutorial.

4 Properties
A sequence of random numbers R1, ... Ri must fulfill two statistical properties:
e Uniformity

— Comnsequence of this property: If the interval [0,1] is divided into
n classes, or sub intervals of equal length, the expected number of
observations in each interval is N/n, where N is the total number of
observations

e Independence

— Consequence of this property: The probability of observing a value
in a particular interval is independent of the previous value drawn

The random number Ri must be independently drawn from a uniform distribu-
tion with pdf:
1 0<z<1
xTr) =
/(@) {O otherwise

Expected Value:
1

1
E(R)z/0 xdx:%z

(=)

Variance:

’

f(x) 4

P

0

Other properties that random number generators should have:
e Efficiency

— The generator should be fast and efficient.
e Reproducibility

— The generator should be able to generate the same stream of ran-
dom numbers repeatedly. This is mainly for testing and debugging
purposes.

e Long Cycle Length

— The generator should take a very long time before numbers start to
repeat.

5 Pseudo-Random Number Generation

It is considered ”"Pseudo” because generating numbers using a known method
disqualifies the potential of true randomness. Computers with no access to out-
side "true randomness” phenomena can only run deterministic algorithms, thus
rendering it at most a pseudo random number generator. There are multiple
algorithms for generating pseudo random numbers.

e Linear Congruential Method

— To produce a sequence of integers, X1, X2, ... between 0 and m-1
by following a recursive relationship:

X1 = (aX; + C) mod m,i=0,1,2...

X0 is the seed

The selection of the values for a, ¢, m, and X0 drastically affects the
statistical properties and the cycle length.

The random integers are being generated in the range [0,m-1], and
to convert the integers to random numbers:

Ri=%i=172.

Example: Use X0 = 27, a = 17, ¢ = 43, and m = 100.
The Xi and Ri values are:

X1 =(17%27+43) mod 100 =502 mod 100 = 2, Ry = 0.02;

Xy = (172+43) mod 100 =77 mod 100 = 77, Ry = 0.77;
X3 = (17%77+43) mod 100 = 1352 mod 100 = 52R5 = 0.52;

Notice that the numbers generated assume values only from the set
I=0,1/m,2/m,.....,(m—1)/m

because each Xi is an integer in the set 0,1,2,....,m-1
Thus each Ri is discrete on I, instead of continuous on interval [0,1]

Generally speaking, do not use the lower order bits from linear con-
gruential generators as they are not very random. The congruential
PRNG has the disadvantage that it is not free of sequential correla-
tions on successive calls. They fall into planes. If k random numbers
at a time are used to plot points in k-dimensional space, then the
points lie on k-1 dimensional planes rather than filling up all k-space.
There are at most m1/k planes, or fewer (which is even worse) if a,
¢, or M are not well chosen. If you take k numbers together, the
correlation can be as high as 2= /%,

e Multiplicative Congruential Method

— Looking at the above linear method: when ¢=0 it is called multi-
plicative congruential method

e Combined Linear Congruential Generators

— A common trick in designing random number generators is to com-
bine several not especially good random number generator. An ex-
ample is the Wichman-Hill generator which combines three linear
congruential generators.

— Could also combine two or more multiplicative congruential gener-
ators in such a way to produce a generator with good statistical
properties

e Random Number Streams

— The seed for a linear congruential random number generator is the
integer value X0 that initializes the sequence

Any value in the sequence can be used as the seed

Random Number Streams refers to a starting Seed from the sequence
X0, X1, X2...

— If the streams are b values apart, then stream i could be defined by
the starting seed:

Si = Xy for i= 1,2...%

Older : b = 10°
Newer : b= 10%"

— A single random-number generator with k streams can act like k
distinct virtual random-number generators

6 Advantages, Disadvantages of PRNG

e Advantages

— Compared to True Random Number Generators, Pseudo-Random
Number Generators can be generated with very fast calculations.
They are easier to debug and test due to its cyclic nature, it requires
low memory and no external hardware is required. Lastly, this makes
Pseudo-Random Number Generators cost efficient and scalable.

e Disadvantages

— However, Pseudo-Random Number Generators are of course not truly
random. Correlation among sequential random numbers may be very
high and cycles will repeat. Thus, pseudo-random generators are
crack-able by brute force or other methods.

7 True Random Number Generation

This is also known as Hardware Random Number Generation as external hard-
ware is needed to extract random numbers from a physical phenomena, rather
than a deterministic algorithm on a computer. Such devices use atmospheric
noise such as thermal noise and other stochastic natural processes. A True
random number generator uses a transducer to convert aspects of physical phe-
nomena to a signal, then uses an amplifier to increase the amplitude of the
random fluctuations to a measurable level. An analog to digital converter is
used to convert the output into a binary digit 0 or 1. A true series of random
numbers are attained after repeated sampling. The use of natural entropy such

as nuclear decay and clock drift is used as well in True random number gen-
eration. The true randomness property can be justified by chaos theory, but
we will not go into specific details. In the generation of True random numbers
outputting binary digits, bias must also be taken into consideration.

8 Pseudo Random Numbers vs. True random
numbers

Now that we know some methods of generating pseudo and random numbers,
we can detail some of the differences between the 2. A comparison of these 2
may provide some insight on why sometimes compromises are made and Pseudo
Random Number Generators suffice, such as in casino gaming and online gam-
bling sites.

Pseudo Random Number Generators cannot truly recreate random events
such a dice rolls. Pseudo Random Number Generators are algorithms that
utilize mathematical formulas to produce sequences that will appear random,
or at least have the effect of randomness.

If the results of a Pseudo Random Number Generator mimicking dice rolls
are listed it will appear random. However, statistical analysis will prove that the
numbers are not really random, but actually predetermined. Thus the results
can be measured and standardized, and overall controlled.

True Random Number Generators behave differently since the results are
truly unpredictable. If a computer tries to produce a real random sequence
of numbers, it must base its numbers on a naturally occurring physical phe-
nomenon. This can include radioactive decay of isotopes, static in airwaves, or
the waves of the ocean. Clearly True Random Number Generators are not cost
efficient when compared to Pseudo Random Number Generators. Additionally,
True Random Number Generators are subject to wear and tear since naturally
occurring phenomenons are subject to entropy.

Another efficiency of Pseudo Random Number Generators is that the same
sequence of numbers can be reproduced if the starting point of the sequence is
known. This allows for better facilitation in real life use and applications - such
as casino control boards. The probability of this happening naturally would
take extremely long unless the actual algorithm is acquired.

Because of these reasons, in many experiments or games that require ran-
domness, such as casinos, Pseudo Random Number Generators are the go to
because of its cost efficiency and periodicity.

9 Testing of Random Number Generators

Clearly there are many different methods of generating random numbers. How-
ever, not all sources of random numbers behave and some are better than others
in different applications. Plenty of methods have been created to test Random
Number Generator’s and the sequences they create. There are 2 distinct groups

of tests: Empirical and Theoretical. Empirical tests are conducted on the
sequences generated by Random Number Generators, and do not require knowl-
edge on the how the sequence is produced. Theoretical tests require knowledge
of the structure of the Random Number Generator but do not necessarily re-
quire the sequence generated. Theoretical tests are better when available. This
paper will focus only on empirical tests. However, before we go into empirical
tests, we will go over two major tests that lay down the foundations for empirical
tests: the chi — square test and Kolmogorov — Smirnov test.

9.1 The Chi-Square Test

The chi-square test (x2) was published in 1900 by Karl Pearson. The chi-square
test can be used in many situations, and approximates probability as to how
likely a given outcome is. Suppose there are n independent observations, each
in one of k categories. Let Yg be the number of observations falling into the
sth category and pg be the probability that an observation falls into category s.
Then, for large values of n, we would expect that

Y, = np,

In order to measure "how far away” we are from these expected values, we define
a reasonable statistic V; as the following

Vi= (Y1 —np1)® + (Yo —npa)® + ... + (Vi — npy)?

This will give some way to measure how close the actual results are to the
expected. V; gives equal weight to each category. If not every p, is the same,
some discrepancies can be overemphasized or hidden. Thus, we must modify the
statistic to V (which is the one that is actually used, and is called the chi-square
statistic). All we need to do here is divide each ith term by np;. After this, V
can be written as

Z (Ys - nps)2

n
1<s<k Ps

or, if rearranged a bit,

Now, what is a reasonable value for V? We can utilize a table that shows the
selected percentage points of the Chi-Square Distribution

Selected Percentage Points Of The Chi-Square Distribution

p=.01 p=05 p=.25 p=.50 p=.75 p=.95 p=.99

v=1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
v=2 002010 0.1026 0.5753 1.386 2.773 5.991 9.210
v=3 01148 03518 1.213 2.366 4.108 7.815 11.34
v=4 02971 0.7107 1.923 3.357 5.385 9.488 13.28
v=35 05543 11455 2.675 4.351 6.626 11.07 15.09
v=06 0.8720 1.635 5.348 7.841 12.59 16.81
v=T 1.239 2.167 6.346 9.037 14.07 18.48
v=_ 1.646 2.733 7.344 10.22 15.51 20.09

v=9 2088 3.325
v=10 2558 3.940
v=11 3.053 4.575
v=12 3.571 5.226
v=15 5.229 7.261
v=20 8.260 10.85
v=230 1495 18.49
v=50 29.71 34.76

8.343 11.39 16.92 21.67
9.342 12.55 18.31 23.21
10.34 13.70 19.68 24.73
11.34 14.84 21.03 26.22
14.34 18.25 25.00 30.58
19.34 23.83 3141 37.57
29.34 34.80 43.77 50.89
4933 56.33 67.50 76.15

To use the table, look at the line with v = k - 1, then compare V to the contents
of that row. Imagine if k = 9, then v would be 8. p = 0.99 entry is 20.09,
meaning that V < 20.09 around 99% of the time. Any value of V too far above
20.09 would be suspiciously high in this scenario. We look at the (k-1)th row for
the following reason: Y7,Y5, ..., Y can be seen as independent Poisson random
variable because they sum up to n. If Y7,Y5,...Y, 1 are known, Y; can be
calculated, as k - 1 of the Y values are independent. The correct choice for n to
use in each situation is not clear - a large n can detect global nonrandomness,
but might smooth out local nonrandomness. The should be performed multiple
times on the same sequence, so a different value of n could be used for different
tests to increase accuracy. One method of interpreting the results of a chi-square
test:

V <1% entry or V >99% entry is considered ”Nonrandom”

1% <V < 5% entries or 5% <V < 99% entries are considered ”suspect”

5% <V < 10% entries or 90% < V < 95% entries are ”almost suspect”

If two or more tests are "suspect” for a sequence, it is not sufficiently random.
The chi-square test is a foundation of many empirical tests, and is probably the
most-used test for Random Number Generators.

9.2 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test originated in 1933 by Kolmogorov, and was
improved in 1939 by Smirnov, leading to the joint name of the test. This test is
useful in areas where chi-square is not, but can also be used together with chi-
square. First a very common function in probability ehtory must be introduced:
The cumulative distribution function (cdf).

Given a random variable X, the cdf F,(x) is:

F,(x) = probabilitythat(X < x)

This probability has a range of [0,1] and will always be increasing as x goes
from —oo to +00 X takes on the values of the sequence generated by a Random
Number Generator. For the KS test, F,(x) must be continuous. It deals with
a different situation, where the numbers generated by a Random Number gen-
erator are allowed to take on any value with in a certain interval, leading to a
continuous cdf. This F,(x) is the theoretical distribution we would expect the
Random Number Generator to have.

If n independent observations of X are made, giving the values X7, Xo, ..., X,,.
The empirical distribution function F,(z) is defined as

numberof Xy, Xo, ..., Xy thatare < x
n

F,(z) =

The KS test compares F,,(z)toF,(z) by measuring the difference between the 2
distribution functions. When n is sufficiently large, we would expect the 2 func-
tions to be similar if the sequence we’re examining is truly random. Therefore
the difference is measured with the following statistics:

K = vnmax(F,(z) — F.(z)), —00 < ¥ < +00

K, = vnmax(F,(z) — F,(7)),—00 < ¥ < +00

K,! is the greatest deviation where F), is greater than F,, and K, is the greatest
deviation where F), is less than F),,. We compare these statistics to the following
table in a similar manner to the chi-square test

Selected Percentage Points Of The Distributions Of K, And K,

p=.01 p=.05 p=.25 p=.50 p=.75 p=.95 p=.99

n=1 0.01000 0.05000 0.2500 0.5000 0.7500 0.9500 0.9900
n=2 001400 0.06749 0.2929 05176 0.7071 1.0980 1.2728
n=23 001699 0.07919 03112 05147 0.7539 11017 1.3589
n=4 001943 0.08789 0.3202 05110 0.7642 1.1304 13777
n=>5 002152 0.09471 03249 05245 0.7674 1.1392 14024
n=>06 002336 01002 03272 05319 0.7703 11463 14144
n=7 002501 0.1048 0.3280 0.5364 55 L1537 1.4246
n==8 0.02650 0.108 03280 0.5392 1.1586 1.4327
n=9 002786 0.1119 0.3274 05411 0.7825 1.1624 1.4388
n=10 002912 0.1147 03297 0.5426 0.7845 1.1658 1.4440
n=11 0.03028 0.1172 0.3330 0.5439 0.7863 1.1688 1.4484
n=12 0.03137 0.1193 0.3357 0.5453 0.7880 1.1714 1.4521
n=15 0.03424 0.1244 03412 05500 0.7926 1.1773 1.4606
n=20 0.03807 0.1298 03461 0.5547 0.7975 1.1839 1.4698

n=230 004354 01351 03509 05605 08036 1.1916 1.4301

The table is read the same way as the chi-square, and like the chi-square n needs
to be selected carefully. n should be big enough so that we can detect if the
distribution function F,(z) and F,(x) are significantly different. Again, n being
too large will usually smooth out local nonrandomness.

KS can be used to create a better procedure of describing a sequence. We can
do this by making m independent (x2) tests on different parts of a random

sequence and record the values Vi, V5, ..., V,,. Then apply a KS test to these
Vi’s. F,, is described by the plotted values of each V;, and F,, can be found from
a chi-square distribution

9.3 Empirical Tests

We will now go over some empirical tests used to determine the "randomness”
of a sequence. Empirical tests are performed on a sequence produced by a
Random Number Generator, and do not require knowledge on how the Random
Number Generator works. [Uy] denotes the sequence Uy, Uy, Us, ... of real
numbers between 0 and 1. The integers should be independently and uniformly
throughout the interval. [Y,] refers to the sequence of integers Yo, Y1, Yo, ..
of integers between 0 and d - 1 where d is an integer, with the rule

Y; = |dU;|

This preserves the same properties of being independent and uniformly dis-
tributed, between 0 and d-1. The rest of this section will go over some examples
of Empirical tests, and how they are used to determine the "randomness” of a
sequence.

1. FrequencyTest The Frequency test is the simplest of the empirical tests.
Given a Sequence

[Un]

require the elements to be uniformly distributed between 0 and 1. Apply
the Kolmogorov-Smirnov (KS) test with

Fz)=xzfor0<z<1

Now we can have categories to use in a chi-square test. For every integer
r where
0<r<d

count the number of times that Y; = r for
0<i<n

Each integer that fulfills this r defines a chi-square category, where we can
now use the chi-square test with k = d (There are d integers between 0 and
d - 1) and p, = 1/d (To make sure it is uniformly distributed). This says:
for a sequence of 0Os and 1s generated by a Random Number Generator,
we would expect to get about the same number of Os and 1s if we were to
take a sample of the sequence.

2. RunsTest The Runs Test requires another definition before it can be
described. A monotonesequence is a sequence who'’s elements are either

10

all increasing or all decreasing. We test a sequence for its ”"runs up”
and its "runs down” - examine the lengths of the sequence’s monotone
sub-sequences. For example, the sequence 1,3,8,7,5,2,6,7,1,6 divided into
”runs up” would look like 1,3,8—7—5—2,6,7—1,6 This would yield a run
of length 3, then 2 run lengths of 1, another run length of 3, and lastly a run
length of 2. A noticeable pattern is that long runs tend to be followed by
short runs, which in turn tend to be followed by long runs. This means that
consecutive observations are not independent from each other, invalidating
the use of a chi-square test. Instead, a more complicated statistic is used
to perform the test, but this is the basic idea of the runs test.

3. GapTest The Gap Test looks at each U; in a certain range and examines
the length of the ”gap” between this element and the next element to fall
in that range. is o and g are 2 real numbers such that

0<a>p<1

we would look for the length of consecutive subsequences

Uj s Ujsas oo, Ujpr, Ujy (r41) such that U; and Ujy (41 are between a and
[but the other elements in the subsequence are not. Use the different
lengths of the caps as the categories for a (x?) test, and the probabilities
as: po = p,p1 = p(1 = p),p2 = p(1 — p)?,...,pk = p(1 — p)*, ... Here p =
B — «, and is the probability that any element U; is between o and 3. An
algorithm can be utilized to record the lengths of consecutive gaps, but
will not be described here.

4. PokerTest The poker test examines n groups of five consecutive integers
and put them each of these groups into one of the following categories:
All different: abcde One pair: aabed Two pairs: aabbe Three of a kind:
aaabc Full house: aaabb Four of a kind: aaaab Five of a kind: aaaaa
A (x?) is applied to these 7 categories. Categories that are less likely
can be grouped together to meet the ”five in each category” requirement.
If categories are combined, their respective probabilities would be added
together. The groups of integers cannot overlap in order to preserve the
independence required by the (y?) test.

10 Applications for Random Numbers

We now know some methods of generating random numbers, and how to tell
if a random number generator is ”good” or not, but an unanswered question
might be why we need random number generators at all. This section will list
some of the applications of random number generators, and how they are useful
in math, science, and everyday life.

1. Numerical Analysis - Random Number Generators can be used to help
solve many problems that are either too difficult to solve, or too difficult to
solve within a reasonable time. There are techniques that can approximate

11

the problem by relying on random numbers. An example of a problem in
this case are the Monte Carlo Methods.

2. Statistics - In statistical sampling, studies usually involve a large number
of samples, and being able to add randomness to the collection can improve
the accuracy of the statistical tests.

3. Simulations - In any some sort of simulation, randomness is always needed
to make the model as real as possible. Some examples are traffic simula-
tions, economics, game simulations, physics simulations, and many more.
Pseudo Random Number Generators provide a large benefit here, as the
sequence can be set so it starts at the same place in the sequence each
time. This allows for more control in the simulation, and the ability to
observe the effects of changing only certain parameters while keeping the
"randomness” .

4. Computer Programs - Similar to numerical analysis, many computer al-
gorithms and programs require a random number or random sequence.
Computer Algorithms can also be tested with by using random inputs.

5. Recreation - Random numbers have been utilized for a variety of recre-
ational purposes. Many computer games include some degree of random-
ness. One of the most successful and widespread use of random numbers
in recreation is gambling - There are card games based on randomness
and probability, and slot machines at casinos utilize Random Number
Generators to operate.

6. Cryptography - Cryptography systems use extremely large amounts of
random data. RSA, for example, requires the use of large random primes
for its security. Two factor authentication will often send users a one time
code that is randomly generated to verify the user’s identity. One time
pads require a long stream of random integers to serve as a key that is the
same size or longer than the message being sent.

11 Conclusion

In this tutorial we described what Random Number Generators are, what prop-
erties they hold. We went over some different methods of generating random
numbers. We looked at Pseudo Random Number Generators and True random
number Generators, and what some of the pros and cons of each are. Pseudo
Random Number Generators have had widespread adoption in the recreation
and gaming worlds, but may not be the best choice in other situations. Test-
ing methods to test the quality of sequences and Random Number Generators
were described, with their meanings explained. Lastly, we went over some ap-
plications of Random Number Generators and how they are used in the science,
mathemetical, and recreational worlds today.

12

12 References

Dutang, Christophe, Diethelm Wuertz. A note on random number generation.
September 2009. Print.

Kurlberg, Par, Carl Pomerance. On The Period of the Linear Congruential
and Power Generators. May 2004. Print.

P. L’Ecuyer, Random Number Generation, in Handbook of Computational
Statistics, Gentle, Haerdle, Morita (eds.), Springer, 2004

Trimbitas, Radu. Random Number Generation: Nuts and Bolts of Simula-
tion. 2011.

Biebighauser, Dan. Testing Random Number Generators. 2000

13

