Active Side-Channel Attack against Deterministic
DSA

Sebastiano Mariani, Lukas Dresel

May 27, 2018

Abstract

This paper will examine how to perform an active side channel attack
against the deterministic version of the Digital Signature Algorithm as specified
in the RFC 6979 [2]. This attack allows an attacker to directly leak the private
key used in the signature. We provide a proof of concept exploit implementa-
tion in Python which demonstrates the effectiveness of the attack by leaking
the private key with constant linear time complexity.

1 Introduction

In this paper we will examine fault side-channel attacks against the deterministic
Digital Signature Algorithm implementation described in RFC 6979 [2].

We present an implementation of one such attack which can lead to leaking the
private key and consequently breaking the authenticity guarantees of the signatures
since they can then be forged.

This paper is structured as follows: In Section 2 we go over background informa-
tion required to understand both deterministic DSA and our proposed attack. The
attack itself will be explained in detail in Section 3 and we show its feasibility by
implementing a proof-of-concept which can break dDSA with some of the common
key sizes and analyze its running time.

2 Background

2.1 The Digital Signature Algorithm

The digital signature algorithm (DSA) is specified as one of three signature schemes
in FIPS 186 [1]. Digital signature schemes are authentication mechanisms which
can provide authenticity and non-repudiation of a message by appending a code to
the message called the signature for the respective author. In general, there are 3
algorithms that compose a signature scheme:

1. The key generation algorithm which creates both private and public key com-
ponents

2. The signature algorithm which takes both the message and the private key and
outputs the signature for that message.

3. The verification algorithm which when given message and signature using the
public key determines whether or not the message was signed using the appro-
priate private key, and thereby accepts or rejects it.

A general digital signature scheme should have the following properties:

1. Without the appropriate private key it should be infeasible to generate a correct
signature for any message which would be accepted by a specific public key

2. Private keys must remain confidential, otherwise the authenticity guarantees of
the scheme would be broken

3. the authenticity of the signature for a given message generated with a given
private key can be verified with the corresponding public key.

4. The owner of a given public key must be verifiable, otherwise a message can’t
be guaranteed to have come from the correct source.

2.2 DSA

DSA is usually performed using the group (Z,-), p and ¢ prime s.t. ¢ — (p-1).
The employed algebraic structure is then the multiplicative cyclic subgroup G' with
publicly known generator g and order gq.

The FIPS 186-3 standard specifies the number of bits of the prime numbers (L,
N) = (loga2(p), log2(q)) as any of the following: (1024, 160), (2048, 224), (2048, 256)
and (3072, 256).

2.2.1 Algorithms
Public Key: k= (, 4,9, 9%)
Private Key: k.., =z € Z,

The algorithms are defined using a chosen hash function H. This function must be a
cryptographic hash function and should be assumed to be known to the attacker.

Algorithm 1: DSA signature algorithm
Data: Message m to sign and a DSA key pair as specified above
Result: Signature of message m

11 =0

2 s=0;

3 h = H(m);

4 while r == 0 or s == 0 do

5 | k=rand() € Z; ;

6 | r=((¢") modp)modq;

7 s=k1-(H(m)—x-r) mod q;
8 end

9 return (r, s);

Algorithm 2: DSA signature verification algorithm

Data: DSA signature (7,s) to verify, message m to be verified, DSA public key
for the presumed author of message m
Result: Whether the signature was accepted or rejected
if rs¢ {1,...,¢— 1} then
‘ return " Rejected”
else
h = H(m);
ur =h-s1tmodq;
Uy =71 -5 1+ mod q ;
if ("1 ((¢*)**) mod p mod ¢ == r then
return ” Accepted”
else
10 ‘ return ”Rejected”
11 end
12 end

© 00 N o ok W N =

2.3 The Deterministic Digital Signature Algorithm
2.3.1 Motivation for deterministics DSA

The random number used in step 5 of Algorithm 1 is required the be a cryptographi-
cally secure random number with high entropy for the algorithm to be secure. Since
normal computers are fully deterministic and cannot generate true entropy they usu-
ally use user input like times of key strokes or the positions of the cursor over a certain
time-period to collect the required entropy.

This dependency can not however be met on more recent devices like IoT devices
or other embedded electronics because users are not available and therefore cannot be
used to harvest entropy. For this reason most manufacturers of these devices rely on
cryptographic systems without the need for high-degree random numbers at runtime.
This explains the prevalence of the RSA cryptosystems in embedded devices over DSA
or ECDSA as they require randomness during the construction of the signatures as

opposed to only during the generation of the key pairs.

To make DSA more attractive for embedded systems like smart devices, key cards,
etc., RFC 6979 [2] proposes the deterministic usage of DSA (dDSA). It proposes to
create the key k from the private key k., and the message m instead of creating
it randomly, therefore derandomizing the signing step. The security of dDSA then
relies on the indistinguishability of k£ from a random oracle.

While deterministic DSA eliminates the need for randomness in the signing step,
the creation of the key pairs of course still requires randomness and so the keys on
these kinds of systems must be created beforehand.

2.3.2 Deterministic generation of parameter k

The algorithm for generating the parameter k from the message and the private key
is illustrated in Figure 1. The parameters are

m
‘ emit k y 1

h1 = H(m)

v

V={ 0x01 0x01 001 ... } K = bits2int(T)

v

K ={ 0x01 Ox01 Ox01 ... } n

v

X = private_key Y
K = HMAC_K(V || 0x00 || int2octects(x) || bits2octects(h1) K =HMAC_K(V || 0x00)

Y

V=HMAC_K(V)
+ A

X = private_key _'I:::HMAC_KW}
K =HMAC_K(V || 0x01 || int2octects(x) || bits2octelts(hl)

v

V=HMAC_K(V)

)

T=T||V

Y

7]

Figure 1: Generation of deterministic K parameter as specified in the RFC 6979

e glen is the binary length of ¢

e tlen is the binary length of array T

e HMAC_K uses the same hash function as the other algorithms, H

3 Breaking Deterministic DSA

3.1 Differential fault analysis

Differential fault analysis is an active side channel attack. It is performed in three
steps:

1. Obtain a correct signature s for message m

2. During a second signing of the message m a fault is injected to obtain a faulty
signature S.

3. Obtain the private key k,,;, using s and s.

An attacker would like to use attacks like this against critical embedded systems,
e.g. credit cards, access cards, etc. in a variety of ways. These include, but are not
limited to, exposing parts of the hardware to intense laser beams, spiking the voltage
of the chips at the right time or overclocking the chips at the correct time.

While defenses against these techniques exist and significantly raise the cost of
these types of attacks, they are not very heavily deployed depending on the field the
hardware is used for.

We operate under the simplifying assumption that these kinds of defense are not
deployed on the target system, as breaking them is out of the scope of this project.

3.2 The attack
3.2.1 Attacking the exponentiation

In the signature algorithm in Section 2.2.1 on line 6 the generator g is raised to
the power of the deterministically generated k. By injecting a bit fault during this
exponentiation we obtain instead ¢¥ = 7 = r - g*%"

The attack then consists of the following steps:

Correct signature of H(m): s = k~*(H(m) + ar)

e Faulty signature of H(m): § = k' (H(m) + z7)
e Then

1. s=, kY (m+ar)

2. 5=, k7t (m + zr)

with k£ and z unknown.

Solving for x and k gives

Lox=, 55

2. k=, s (mz+r)

By using this attack we can calculate the private key component x using only
the outputs of two signing operations of a plaintext message m. Solving the above
equations is possible in constant linear time complexity of O(1).

Using our implementation of both the algorithms and the attack in Python we
verified our attack by creating a new key pair, signing a message once without injecting
a fault and another time with the bitfault included. After recovering the private key
kpriv We recreated a key pair for it and signed a new message 1, with it. We could
then verified that the signature for m,,., generated with the recovered key pair was
accepted by the verification algorithm when given the old key pair.

References

[1] National Institute of Standards and Technology. Digital signature standard (dss).
2013.

[2] T. Pornin. Deterministic usage of the digital signature algorithm (dsa) and elliptic
curve digital signature algorithm (ecdsa). 2013.

