
ElGamal Cryptosystem with an Application

Metehan Ozten
CS293G

June 2018

1 Introduction

The ElGamal Cryptosystem is a public-private key encryption system, known as
an asymmetric cryptosystem because it involves a system in which different users
will have different keys used for encryption and decryption[Roe]. In a public-
private key cryptosystem, the public key is distributed freely to other users
and used to send encrypted messages that can only be decrypted by someone
with the private key associated with that specific public key. I intend to go
over the three primary components of the ElGamal cryptosystem which are
the key generation algorithm used to generate keys, the encryption method
which utilizes a public key to encrypt a given plaintext, and finally a decryption
algorithm which requires the private key in order to decrypt a given ciphertext
[Mei]. Towards the end of the paper, I will also present a novel application of
the ElGamal Cryptosystem, which is a modification to the TCP protocol, which
provides end-to-end encryption with some interesting properties.

The ElGamal cryptosystem also has several other unique features that I will
discuss throughout the paper such as its use of an ephemeral key, and the fact
that it is a form of homomorphic encryption [Aca].

2 Key Generation

Before any encryption or decryption can occur, a user must first generate their
own keys (or if they are only encrypting, at least receive the public key via
some communication medium) using the cryptosystem’s unique key-generation
algorithm. The key generation algorithm can be concisely described as follows:

1. Alice should select three parameters: p, a large prime number, α (which
should be less than p), and finally a random number d that falls within
2 < d < (p− 2) [Elg85]

2. Alice then computes the following:

β = αd (mod p)

1

3. In this case, β would be considered Alice’s the public key, with the system-
wide parameters p and d . In some notations, the tuple (p, α, β) would
be considered Alice’s public key, since a user would need to know all three
parameters in order to successfully encrypt a message that only Alice could
decrypt [Leo].

3 Encryption

Once the relevant parties have generated their keys (any user that will be re-
ceiving data through an encrypted channel, will need a public-private key pair)
and exchanged them with each other, then users can begin encrypting data for
certain parties. In order to understand how encryption is performed in the El-
Gamal Cryptosystem, I will provide a generalized example wherein Bob wants to
send an encrypted message to Alice, operating on the assumption that Bob has
already received Alice’s public key, which consists of the following parameters
(p, α, β) [Leo].

Bob will start the process out by choosing an integer Ke, which is a random
integer that is less than p but greater than 0. This is known as the ephemeral key,
because it is constantly changing [Aca]. It grants the ElGamal Cryptosystem an
interesting property in which, the same chunk of data encrypted twice produces
different ciphertexts and have an extremely small probability 1

p−1 of collision,
due to the random generation of Ke. The incorporation of this ephemeral key,
prevents an attacker from detecting patterns in messages and message-timings
by comparing cipher-texts [Leo].

Next, after choosing a sufficient ephemeral key, Bob then begins computing
the first of the two components of the ciphertext for the message he wishes to
send to Alice. Denote the message Bob wishes to send Alice in plaintext as M ,
and the eventual ciphertext as C , then

C ≡ (αKe (mod p), βKe ∗M (mod p))

If the plain text is larger than what can be encoded into a single number less
than p, the number is then broken down into chunks and each piece is encrypted
individually (which are also both less than p), which is the reason why encrypted
messages are two times as long as their corresponding plaintext in the ElGamal
cryptosystem.

4 Decryption

The final algoritm within the ElGamal cryptosystem is decryption, in which
a user with a private key that corresponds to a public key that was used to
produce a given ciphertext, decodes that given ciphertext in order to retrieve
it’s plaintext equivalent.

Let’s assume Alice just received a ciphertext C which is a tuple of messages,
containing the following fields, (αKe (mod p), βKe∗M (mod p). The unencrypted

2

plaintext can be obtained by multiplying the first element in the ciphertext
tuple, to the negative d power, by the second element in the ciphertext tuple,
or in other words

(αKe)−d ∗ βKe ∗M (mod p) ≡ (αKe)−d ∗ (αd)Ke ∗M ≡M (mod p)

where d is Alice’s private key [Leo].

5 Homomorphic Encryption

The ElGamal Cryptosystem contains an interesting property in which the en-
cryption function (E) and the plaintext messages M1 and M2, which is a group
homomorphism from the cyclic group G to the group G×G, obeys the following
property:

E(M1) ∗ E(M2) ≡ E(M1 ∗M2)

[Elg85]

5.1 Application

Figure 1: TCP Packet Structure [Mul]

3

The TCP communications protocol is the most widely used transport layer
protocol for the vast majority of applications, with few exceptions. Within
Figure 1, shown above, the TCP packet structure is displayed with its internal
fields labeled. The application that will be discussed exists as an optional feature
within the TCP protocol. Besides existing as an option within the protocol, the
use of this option will add an additional checksum to each packet, located at the
beginning of the payload section, which will provide additional error-detection
capabilities.

5.1.1 During 3-Way Handshake

During the initial 3-way handshaking of the TCP protocol, each end of the TCP
channel will indicate in the ‘options’ portion of their handshaking packet (shown
in Fig. 1) that it wants to use encrypted data transport [Ine]. If both users
indicate that they want to use encrypted data transport then each user’s packet
payload which is placed into the ‘data’ portion of the packet will from this point
be encrypted using the public-key received from the other user.

5.1.2 After Initialization

The TCP protocol, at this point will begin computing an additional checksum
after sending each packet, by encrypting the whole data portion of the packet
and multiplying each portion of the ciphertext by each other and using that as
the checksum (leaving the original checksum portion of the packet, as only a
checksum over the non-payload data, allowing the recipient to distinguish be-
tween errors in the packet overhead and the packet payload). This multiplicative
checksum will be placed at the front of the ‘data’ portion of the packet. The
homomorphic property comes in handy at this point as it allows for the check-
sum to be calculated by the original senders and intermediate carriers directly
on the encrypted data, making it simpler to be handled in embedded hardware
settings and allowing the network to find checksum errors in packets as they
are traveling to their destination and preemptively dropping them before they
waste further bandwidth.

6 Conclusion

The ElGamal Cryptosystem’s properties make it an interesting object of anal-
ysis. Due to some less desirable properties, such as the relative difficulty of
computing the cryptographic primitives as compared to those used in other
asymmetric public-private key cryptosystems and the fact that the ciphertext
generated is twice as long as the plaintext, it is not used often in practical ap-
plications. Many applications choose RSA which coincidentally shares the same
homomorphic property as the ElGamal cryptosystem [Tes].

4

Sources

[Elg85] Tamer Elgamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: IEEE Transactions on Informa-
tion Theory IT-31.4 (1985). doi: http://caislab.kaist.ac.kr/
lecture/2010/spring/cs548/basic/B02.pdf.

[Aca] Crypto Academy. The ElGamal cryptosystem. url: https://cryptographyacademy.
com/elgamal/. (accessed: 06.10.2018).

[Ine] Inetdaemon. TCP 3-Way Handshake (SYN,SYN-ACK,ACK). url: http:
//www.inetdaemon.com/tutorials/internet/tcp/3-way_handshake.

shtml. (accessed: 06.10.2018).

[Leo] Jeffrey Leon. The ElGamal Public Key Encryption Algorithm. url:
http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/

el-gamal.pdf. (accessed: 05.08.2018).

[Mei] Andreas V. Meier. The ElGamal Cryptosystem. url: http://wwwmayr.
in . tum . de / konferenzen / Jass05 / courses / 1 / presentations /

Meier % 20Andreas % 20The % 20ElGamal % 20Cryptosystem . pdf. (ac-
cessed: 05.09.2018).

[Mul] Michael Mullins. Exploring the anatomy of a data packet. url: https:
//www.techrepublic.com/article/exploring-the-anatomy-of-

a-data-packet/. (accessed: 05.09.2018).

[Roe] Tom Roeder. Asymmetric-Key Cryptography. url: https://www.cs.
cornell.edu/courses/cs5430/2013sp/TL04.asymmetric.html.
(accessed: 06.10.2018).

[Tes] Edlyn Teske-Wilson. Homomorphic Cryptosystems. url: https://

www.fields.utoronto.ca/programs/scientific/10-11/numtheoryconf/

Edlyn_Teske_Wilson.pdf. (accessed: 06.9.2018).

5

