
CREN
Presentation()

Jun Hong Peng

Blockchain in a nutshell

We want a distributed system for record keeping

Ideally, everyone should maintain and agree on the same records

Assuming an open network where anyone can join/leave

Assume individual participants are only incentivized by their own selfish interest

Blockchain in a nutshell (cont.)

Goal:

build a system that discourages selfish entities from deviating from the network protocol

& capable of defending against the existence of a few bad actors

namely, a percentage of adversarial participants bellow a certain threshold should not
jeopardize the integrity of our record keeping

Blockchain in a nutshell (cont.)

Cannot designate one entity to do all the record keeping and just propagate to
the other replicas

Why?

compromising that one entity = compromising the entire network

a fixed eternal leader means attackers get ∞ attempts at compromising it

Blockchain in a nutshell (cont.)

One solution is to periodically randomly select a new “leader”

*Not going in to details of proof-of-work protocols and why they work

Essentially, it is a continuous lottery game

Winner randomly selected at each round

First such simulation of “fair” random selection: Nakamoto’s Bitcoin

Take away: proof-of-work is just one such method to achieve “random selection”

Disadvantage of PoW

Time consuming

High energy consumption

Not so random: mining pools, etc.

Adversarial attacks due to time lags: block withholding attack, etc.

Alternatives

Researchers have been looking for more efficient methods of distributing
leadership responsibilities

One idea is proof-of-stake:
tie an entity’s probability of becoming leader with its “stake” in the network

can further incentivize good behaviour by punishing malicious leaders (e.g. take away some
of their stake)

Proof of Stake

All existing proof-of-stake networks lack mathematical security guarantees

Main talking point today:

A new proof-of-work system: Snow White

First mathematically provably secure proof-of-work

Fixes some existing issues that plague other blockchain systems

I will not go in to details of Snow White’s proof, rather a description of the protocol

Snow White (provably secure PoS)

leverages another consensus scheme: Sleepy Consensus

Uses the new “fruitchain” to further discourage harmful behaviours

I will be describing the Sleepy Consensus and fruitchain as well as how they fit in to

Background info (Proof of Work Protocol)

At any given block 𝑛, takes inputs:
• ℎ௡ିଵ, Hash of previous block

• 𝑇𝑋, any subset of the transaction pool

• 𝜂 ← 0,1 ௡, a random number

• Compute 𝐻 ℎ௡ିଵ, 𝑇𝑋, 𝜂

• Wins if 𝐻 ℎ௡ିଵ, 𝑇𝑋, 𝜂 < 𝑑௣, where 𝑑௣ is the difficulty parameter

Sleepy Consensus Protocol

௞బ ௌ௄ ௉ ௣

଴

Sleepy Consensus (cont.)

What it achieves:
Instead of having participants compete in finding a value smaller than the defined security parameter, we
let “fate” decide.

A leader is chosen based on the current time and their ID: public key

Think of the idea that all time past, present and future are constant and predetermined. The leader at any
given time is already “predetermined”

Takes away the meaningless computational guess work in p-o-w

Sleepy Consensus

Why we need the time restriction:
all times must be increasing, future times are invalid?

Without the time restriction, can attack by proof-of-work

𝑃𝑅𝐹௞బ
𝑃, 𝑡 alone does not work:

𝑘଴ is public

attacker can precompute and figure out which player 𝑃 will win at what time

attacker can then proceed to sleep those players and stall the network

From Prev. Slide:
𝑃𝑅𝐹௞బ

𝑃, 𝑡 ⨁𝑃𝑅𝐹ௌ௄ ௉ 𝑡 < 𝐷௣

Adversary Super Powers:
• Sleep any honest player
• Delay messages

Sleepy cont.

This is why we need the 2nd part:

௞బ ௌ௄ ௉ ௣

Because the 2nd portion contains a player’s secret key, an adversary will not be
able to precompute the final value of player at time without
knowing ᇱ secret key

Sleepy cont.

Since 𝑆𝐾 𝑃 is private, no one except 𝑃 knows it

𝑃 can use different 𝑆𝐾[𝑃] values until finds one satisfying:

𝑃𝑅𝐹௞బ
𝑃, 𝑡 ⨁𝑃𝑅𝐹ௌ௄ ௉ 𝑡 < 𝐷௣

We need a zero-knowledge way to make sure that 𝑃 is indeed using its real secret key without
actually knowing the value of 𝑆𝐾[𝑃]

solution: Verifiable Random Function (VRF)

From Prev. Slide:
𝑃𝑅𝐹௞బ

𝑃, 𝑡 ⨁𝑃𝑅𝐹ௌ௄ ௉ 𝑡 < 𝐷௣

VRF

Recall:
CDH assumption:

Given 𝑔, 𝑔௔ 𝑎𝑛𝑑𝑔௕hard to find 𝑔௔௕ etc.

DDH assumption

Given 𝑔௔ 𝑎𝑛𝑑 𝑔௕, 𝑔௔௕ indistinguishable from 𝑔ோ

Inverse CDH & DDH assumption

Bilinear Mapping

𝑒 𝑔௔, 𝑔௕ = 𝑒 𝑔, 𝑔 ௔௕

*CDH, DDH, inverse CDH+DDH assumption applies for Bilinear Mapping as well

VRF cont.

Let us define the following
VRF function:

VRFௌ௄ ௉ (𝑡) = 𝑒 𝑔, 𝑔
ଵ

௧ାௌ௄[௉]

Proof String:

Proofௌ௄[௉] 𝑡 = 𝑔
ଵ

௧ାௌ௄[௉]

Given , we want to prove the valid ௌ௄ ௉

without knowing

VRF cont.

Goal:
a player 𝑃 joins the network, chooses a secret key 𝑆𝐾[𝑃] and broadcasts the corresponding
public key 𝑃𝐾[𝑃] = 𝑔ௌ௄[௉] to the network

at some time 𝑡, 𝑃 would broadcast a value he claims to be the output of

VRFௌ௄ ௉ ∗(𝑡)

Without learning the value of 𝑆𝐾[𝑃] others on the network would like to verify

𝑆𝐾 𝑃 ∗ = 𝑆𝐾[𝑃]

VRF algorithm

Consider 2 functions:
Prove SK∗, 𝑡 & Verify(VRFୗ୏భ

∗ 𝑡 , Proofୗ୏మ
∗ 𝑡 , 𝑡)

Take input SK∗, 𝑡

return: VRFௌ௄∗(𝑡) and Proofௌ௄∗ 𝑡

From Prev. Slides:
𝑃𝐾 = 𝑔ௌ௄

𝑉𝑅𝐹ௌ௄ 𝑡 = 𝑒 𝑔, 𝑔
భ

೟శೄ಼

Proof௦௞ 𝑡 = 𝑔
భ

೟శೄ

𝑒 𝑔௔, 𝑔௕ = 𝑒 𝑔, 𝑔 ௔௕

VRF algorithm

Verify VRFୗ୏భ
∗ 𝑡 , Proofୗ୏మ

∗ 𝑡 , 𝑡 :

takes the output of Prove(SK, t) as inputs

if 𝒆 𝒈, 𝐏𝐫𝐨𝐨𝐟𝒔𝒌𝟐
∗ 𝐭 == 𝐕𝐑𝐅𝒔𝒌𝟏

∗ 𝐭 && 𝒆 𝒈𝒕𝑷𝑲, 𝑷𝒓𝒐𝒐𝒇𝑺𝑲𝟐
∗ 𝒕 == 𝒆 𝒈, 𝒈

return TRUE

return FALSE

First condition checks if 𝑆𝐾ଵ
∗ == 𝑆𝐾ଶ

∗:

LHS:

𝑒 𝑔, Proofୗ୏మ
∗ t = e g,

1

g୲ାୗ୏మ
∗

= e g, g
ଵ

୲ାୗ୏మ
∗

RHS:

VRFௌ௄భ
∗ 𝑡 = e g, g

ଵ
୲ାୗ୏భ

∗

∴ Equality only holds if SKଵ
∗ == SKଶ

∗

From Prev. Slides:
𝑃𝐾 = 𝑔ௌ௄

𝑉𝑅𝐹ௌ௄ 𝑡 = 𝑒 𝑔, 𝑔
భ

೟శೄ಼

Proof௦௞ 𝑡 = 𝑔
భ

೟శೄ಼

𝑒 𝑔௔, 𝑔௕ = 𝑒 𝑔, 𝑔 ௔௕

VRF algorithm

Verify VRFୗ୏భ
∗ 𝑡 , Proofୗ୏మ

∗ 𝑡 , 𝑡 :

takes the output of Prove(SK, t) as inputs

if 𝒆 𝒈, 𝐏𝐫𝐨𝐨𝐟𝒔𝒌𝟐
∗ 𝐭 == 𝐕𝐑𝐅𝒔𝒌𝟏

∗ 𝐭 && 𝒆 𝒈𝒕𝑷𝑲, 𝑷𝒓𝒐𝒐𝒇𝑺𝑲𝟐
∗ 𝒕 == 𝒆 𝒈, 𝒈

return TRUE

return FALSE

Second Condition checks if the 𝑆𝐾∗ used to generate Proof & Verify is same as the 𝑆𝐾 corresponding to the public key:

LHS:

𝑒 𝑔௧𝑃𝐾, Proofௌ௄మ
∗ 𝑡 = 𝑒 𝑔௧𝑔ௌ௄, 𝑔

ଵ
௧ାௌ௄మ

∗ = 𝑒 𝑔, 𝑔
௧ାௌ௄
௧ାௌ௄మ

∗

LHS == RHS iff SK == SKଶ
∗

∴ We have a zero-knowledge proof varifying the SK∗ used in VRF equals SK

From Prev. Slides:
𝑃𝐾 = 𝑔ௌ௄

𝑉𝑅𝐹ௌ௄ 𝑡 = 𝑒 𝑔, 𝑔
భ

೟శೄ಼

Proof௦௞ 𝑡 = 𝑔
భ

೟శೄ಼

𝑒 𝑔௔, 𝑔௕ = 𝑒 𝑔, 𝑔 ௔௕

FruitChain (inspiration)

Another important mechanism of 𝑆𝑛𝑜𝑤𝑊ℎ𝑖𝑡𝑒 is 𝐹𝑟𝑢𝑖𝑡𝐶ℎ𝑎𝑖𝑛

In current PoW, there is only 1 winner at each timestep

It takes 2-4 years for an average participant to win 1 round

This leads to people joining mining pools (from decentralized to centralized)

PoW also suffers from “block withholding” attacks (always accepts longest chain)

FruitChain (background info)

To understand , we must first dive into economics and game theory

In a normal “first price” auction:
Players are incentivized to bet their max valuation

In fact, betting their max valuation is a dominant strategy

In “2nd price” auction:
Only a weakly dominant strategy to bet at one’s max valuation

2nd Price Auction

Unlike a normal auction, where the highest bidder wins and pays his respective bid, a 2nd Price
auction winner pays the next highest bid (in other words, the highest losing bid)

𝐸. 𝑔.:
2 player auction: Pଵ, Pଶ

𝑃ଵ bids 100 for the object, Pଶ bids 10

𝑃ଵ wins the bid, but pays the price 𝑃ଶ bidded. that is 𝑃ଵ pays 10

For details of the strategic game implication of this and the Vickery auction, refer to Google and
Wikipedia

FruitChain

At any given round, we define the hash for that round as

ିଵ

:௞ ௣

append block to chain and broadcast

ି௞ ௣(୤୰୳୧୲)

broadcast fruit, add it to the existing pool of fruits

ℎିଵ: hash of last block
𝜂: nounce
𝐹: set of fruits
𝑇𝑋: set of transactions
ℎ :௞: prefix of ℎ
ℎ ି௞: suffix (last 𝑘 𝑏𝑖𝑡𝑠)

FruitChain

At a round , instead of rewarding the miner who found block , equally reward
owners of the contained in the ௧௛ block

This achieves the mining pool affect without collaboration

since each block must contain a set of fruits

and the reward goes to the fruit owners not the miner of the block

Block-withholding does not work

Block withholding

This attack works against p-o-w networks

Upon discovering a valid block 𝑏௡ାଵ for a chain 𝐶, adversary 𝐴 does not broadcast his solution
to the network. chain length of 𝐶 is 𝑛

Instead, he tries to further extend his own new chain 𝐶஺ = 𝐶 ∥ 𝑏௡, while the rest of the
network is still working on 𝐶

If some other player solved the 𝑛 + 1 block, 𝐴 would quickly publish his chain to split the
network (split is possible due to propagation delay)

essentially, 𝐴 gained unfair advantage of extra time solving his own chain 𝐶஺

This attack not only gives 𝐴 extra time, it can also overwrite a block mined by some other
player.

Snow White (combining everything)

uses the and to build a non-
proof-of-work system that also eliminates selfish mining

can be turned into proof-of-stake by associating each unit
of network currency with an unique ID (public key)

Thus, more stake one has higher chance of becoming leader

Snow White (dealing with Nothing-at-Stake attacks)

• Lock a portion of the sitting committee’s funds while they are in power

• Past committee has power to rewrite their blocks with out penalties once
they transfer funds out

• If there are attempts of rewriting histories, new nodes will not be able to
distinguish

• Solution: a list of trusted nodes

